Quantum Complexity Theory

Sevag Gharibian

January 2021

Department of Computer Science
Paderborn University
Germany

Contents

[I Classical Complexity Theory Review| 1
(1.1 Introductionl. e 1
... 3
[1.3 Classical complexity theory| o 3

[1.3.1 Turing machines| 3
132 Pand NPl 5
[1.3.3 The Cook-Levin Theorem, NP-completeness, and Reductions| 7
[1.3.4 The Extended Church-Turing Thesis| 9

2 Quantum computation review| 11
2.1 Linear Algebral 11
[2.2 Basic quantum computation|. oo L 16

[2.2.1 Pure state quantum computation| 16
[2.2.2 Mixed state quantum computation| L. 21

(3 Bounded error quantum polynomial time (BQP)| 24

BIBPPl 24
[3.1.1 Syntactic versus semantic classes, PromiseBPP, and what will really be |

| PromiseBQP| oo 25

BZ BQP o 27
[3.2.1 Norms and perturbations to quantum gates| 28
13.2.2 Universal quantum gatesets|. 30
[3.2.3 The BQP subroutine problem|. 0. 31

[3.3 Relationship to other complexity classes| 32

[4 Linear systems of equations and a BQP-complete problem| 35
4.1 The basic idea: (Quantum eigenvalue surgery|. 35

|4.1.1 Aside: Brief review of the QFT'and QPE| 38

4.2 A quantum algorithm for linear systems of equations| 39
4.2.1 Condition numbers of matricesl 39
|4.2.2 Assumptions for the algorithm| 40
[4.2.3 The algorithm| o oo 41

4.3 A BQP-complete problem: Matrix inversion|, 43

5 Quantum Merlin Arthur (QMA) and strong error reduction| 47
[5.1 Quantum Merlin Arthur (QMA)| 47
[5.2 Strong error reduction for QMA| o L 50

[5.2.1 Intuition: A spmning top| 50
[5.2.2 Proof of strong error reduction| L. 51

5.3 Relationship to other classes|. oo L. 55
[.3.1 The many cousins of QMA|, 55
15.3.2 Using strong error reduction to show QMA CPP|. 57

[0 The quantum Cook-Levin theorem| 59

6.1 The Cook-Levin theorem| 59
6.2 Local Hamiltonians and Boolean Constraint Satisfactionl 62
6.3 The quantum Cook-Levin theorem| 65
6.3.1 Containment in QMA| o 66

16.3.2 Hardness for QMA| 68

|7 Quantum-Classical Merlin Arthur (QCMA) and Ground State Connectivity| 76
[7.1 Quantum-Classical Merlin Arthur (QCMA)| 76
7.2 Ground State Connectivity] o 77
[7.2.1 QCMA-completeness ot GSCON| 79

[8 Quantum Interactive Proofs (QIP), semidefinite programs, and multiplicative weights| 86
[8.1 The Multiplicative Weights algorithm| 86
8.2 QIP and semidefinite programs| oL 88
[8.2.1 Quantum interactive proofs| 89

[8.2.2 Semidefinite programming|. 90

[8.2.3 Quantum interactive proots as SDPs|o o000 93
R3QIP =PSPACE] e 95
[8.3.1 The algorithm| o 0 oo 96

832 Correctnessl 98

[9 Boson Sampling] 101
9.1 Of hedgehogs and photons| 101
9.2 Connection to the matrix permanent| 105
9.3 Boson Sampling|. 107
9.3.1 Theexactcasel 107

9.3.2 The approximate case| 108

(10 BQP versus the Polynomial Hierarchy| 113
[10.1 The key claim|. o 114
[10.1.1 The connection between bounded depth circuits and alternating quantifiers|115

[10.1.2 OQutline for lecturel 116

[10.2 The distribution DI o 117
[10.3 Distinguishing D from Usy is easy quantumly|. 118
[10.4 Distinguishing D from Usy is hard classically] 120
[10.4.1 Boolean circuits and multilinear polynomials| 120

[10.4.2 Tools and proof approachl L. 120

[10.4.3 Main theorem and proof sketch| 121
Bibliograp 124

ii

1 Classical Complexity Theory Review

The future is not laid out on a track. It is something that we can decide, and to the
extent that we do not violate any known laws of the universe, we can probably make
it work the way that we want to.

— Alan Kay

1.1 Introduction

Welcome to Quantum Complexity Theory! In this course, we ask the central question: What
quantum computational resources are required to solve certain tasks? These tasks might involve
“classical” problems, such as factoring large integers or solving systems of linear equations, or
“quantum” problems, such as computing properties of physical systems in Nature. Along the
way, we shall encounter both “expected” complexity classes, such as quantum generalizations
of P and NP, as well as “unexpected” classes with no interesting classical analogue, such as
QMA(2), whose exact computational power remains frustratingly unknown. In a nutshell, our
aim will be to flesh out an “answer” to Alan Kay’s statement above — what does Nature allow
us to do, or not do, from a computational perspective?
The first step in this journey is the all-important question:

Why should quantum complexity theory be interesting?

There are many reasons for this; let us focus on arguably the most famous one. Every day,
millions of online consumers rely on cryptosystems such as Rivest-Shamir-Adleman (RSA) to
keep (say) their credit card information secure online. There is, however, a theoretical problem
with this — the RSA scheme has never been proven secure. Rather, it is presumed to be
secure, assuming the mathematical problem of factoring large integers (denoted FACTOR) is
“hard”. Unfortunately, noone really knows how hard FACTOR really is. For example, it is
neither known to be efficiently solvable classically (i.e. it is not known to be in P), nor is
it provably intractable (e.g. FACTOR is not known to be NP-hard). In 1994, Peter Shor
thread the needle (and in the process, shocked the theoretical computer science community)
by demonstrating that a quantum computer can solve FACTOR efficiently. Thus, if large-scale
quantum computers can be built, then RSA is broken and your credit card information is no
longer secure. Moreover, we are faced with the confounding question of how the existence of
Shor’s algorithm should be interpreted:

e s Shor’s algorithm evidence that FACTOR is actually in P, and that we as a community
have failed to be clever enough to find good classical algorithms for it?

e Or perhaps the algorithm hints that quantum computers can solve wvastly more difficult
problems, including NP-complete ones?

e And maybe neither of these holds — maybe quantum computers can outperform classical
ones on “intermediate” problems such as FACTOR, but not genuinely “hard” ones such
as NP-hard problems?

To date, we do not know which of these three possibilities holds. What we do know, is that
we are at a very exciting crossroads in computer science history. Thanks to Shor’s algorithm,
one of the following statements must be false:

1. The Extended Church-Turing Thesis is true.
2. FACTOR cannot be solved efficiently on a classical computer.
3. Large-scale universal quantum computers can be built.

We will return to this crossroads at the end of the lecture, but for now let us note that the fact
that quantum computers appear “more powerful” than classical ones is not entirely surprising.
Indeed, the physics community has long known that simulating quantum systems with classical
computers appears to require an inevitable exponential overhead in time. And as far back
as the 1970’s, visionaries such as Stephen Wiesner began to realize that quantum information
seemingly allows one to do the impossible, such as create physically uncloneable “money” using
quantum states. Thus, the question “What quantum computational resources are required to
solve certain tasks?” indeed appears extremely interesting.

Scope of course. Our focus in this course is quantum complexity theory, strictly construed.
The field itself is far too large to capture in a single course; thus, we shall aim to cover many
fundamental algorithms and complexity classes, while striking a balance between approachable
difficulty for a Masters course and more advanced results. Along the way, useful mathematical
frameworks such as Semidefinite Programming (SDPs) and the multiplicative weights method
will be covered, which find applications in areas beyond quantum computation.

There are unfortunately many complexity-related topics which, due solely to time constraints,
we will likely be unable to cover. A select sample of these include quantum Turing machines,
additional complexity classes (such as Quantum Statistical Zero Knowledge (QSZK), Stoquastic
MA (StogMA), Quantum Multi-Prover Interactive Proofs (QMIP), QMA with Polynomial-
Size Advice (QMA /qgpoly), complexity classes with exponentially small promise gap (such as
QMAxp), Quantum Polynomial-Time Hierarchies (QCPH and QPH), etc...), advanced topics
from the subarea of Quantum Hamiltonian Complexity such as area laws, tensor networks,
and perturbation theory gadgets for simulating local interaction terms, advanced circuit-to-
Hamiltonian constructions such as 1D constructions and space-time constructions, undecidable
problems in quantum information such as detecting spectral gaps of local Hamiltonians, other
candidate models for demonstrating “quantum supremacy” such as IQP and DQC1, classical
simulations of quantum circuits which minimize T-gate count, and so forth.

Resources. The entry point for any course on complexity theory should arguably be the “Com-
plexity Zoo”, which provides brief information on over 545 (as of 26.10.2020) complexity classes:

https://complexityzoo.uwaterloo.ca/Complexity_Zoo.

Existing surveys focusing on quantum complexity theory include:

e Quantum NP - A Survey (Aharonov and Naveh, 2002): https://arxiv.org/abs/quant-ph/

0210077,

e Quantum Computational Complexity (Watrous, 2008): https://arxiv.org/abs/0804.
3401,

https://complexityzoo.uwaterloo.ca/Complexity_Zoo
https://arxiv.org/abs/quant-ph/0210077
https://arxiv.org/abs/quant-ph/0210077
https://arxiv.org/abs/0804.3401
https://arxiv.org/abs/0804.3401

e QMA-Complete Problems (Bookatz, 2014): https://arxiv.org/abs/1212.6312,

e Quantum Hamiltonian Complexity (Gharibian, Huang, Landau, and Shin, 2015): https:
//arxiv.org/abs/1401.3916.

Prerequisites. Before we can make sense of ideas in quantum complexity theory, we require
a brief review of the basics of both classical complexity theory and quantum computing. This
course assumes some familiarity with both areas (such as a previous introductory course, par-
ticularly for quantum computation), but we shall attempt to make the content as self-contained
as possible.

Acknowledgements. We thank Cameron Calcluth, David Fitzek, Oliver Hahn, Stefan Heid,
Raphael Heitjohann, Dorian Rudolph, Jannes Stubbemann, Marika Svensson for catching typos
in these notes. We thank Harry Buhrman for discussions regarding the contents of Lecture 1.

1.2 Notation

Throughout this course, the symbols N, R, Z, C refer to the sets of natural, real, integer, and
complex numbers, respectively. We define N to include 0, and ZT,R™ to be the sets of non-
negative integers and real numbers, respectively. The set of all n-bit strings is denoted {0,1}".
The terminology |z| is overloaded: If # € C, then |z| = vzx* (for * the complex conjugate of
x), and if z is a string, |z| denotes the length (i.e. number of symbols) of x. The notation [n]
denotes set {1,...,n}. We use := to denote a definition.

1.3 Classical complexity theory

The “basis” of complexity theory is the pair of complexity classes Polynomial-Time (P) and
Non-Deterministic Polynomial-Time (NP). To define these, we must recall the definition of a
Turing machine. Note that while the remainder of this lecture works exclusively with the Turing
machine model of classical computing, one can equivalently work in the circuit model, which
we will switch to in Lecture 2 when discussing quantum computation. Nevertheless, the notion
of a Turing machine will be crucial to defining “uniformly generated quantum circuit families”
in Lecture 2, and is good to keep in mind for the remainder of the course. As this section is a
review, we shall move rather quickly.

1.3.1 Turing machines

In order to formally study the nature of computing, we require a standard model of what
it means to “compute”. This role is played by the Turing machine, an idealized model for
computing proposed by Alan Turing in 1936. In hindsight, the model is remarkably basic —
it consists of a “brain” or “control” unit which makes decisions, an infinitely large memory
stored on an infinitely long tape, and a “head” to read and write data from the tape. A formal
definition is given below.

Definition 1.1 (Turing Machine (TM)). A Turing Machine is given by a 7-tuple (Q, 3,1, 0, qo, Gaccept > Greject) s
defined as:

e () - a finite set denoting the states the TM can be in.

https://arxiv.org/abs/1212.6312
https://arxiv.org/abs/1401.3916
https://arxiv.org/abs/1401.3916

> - a finite set denoting the input alphabet, i.e. set of symbols which can be written on
the tape to encode the input before the TM starts. (¥ is assumed not to contain the special
blank symbol L.)

e ' - a finite set denoting the tape alphabet, i.e. set of symbols which can appear on the
tape. Note X CT and U €T.

e 0:QxI'— QxT x{L,R} - the transition function, which takes in the current state of
the TM and tape symbol under the head, and outputs the next state, tape symbol to write
under the head, and whether to move the head left (L) or right (R) one cell on the tape.

e qo € Q - the designated start state of the TM.

® Gaccept € @ - the designated accept state of the TM, i.e. the TM halts and accepts imme-
diately upon entering state qaccept -

® Groject € Q - the designated reject state of the TM, i.e. the TM halts and rejects immediately
upon entering state reject -

With this model in place, we can crucially define what is meant by “one step of a computa-
tion”. Namely, this means our TM reads the current tape symbol under the head, updates the
state of the TM, writes a new symbol under the head, and moves the head left or right precisely
one cell.

Recall that a TM now operates as follows. Before it begins, we assume the input to the
computational problem to be solved is written on the tape using symbols from Y. Once the
TM machine starts, it executes a sequence of computation steps. If the TM enters either state
Qaccept OT Greject, the TM halts and accepts or rejects, respectively. Without loss of generality,
we may assume that if the TM also produces some output string z upon halting, then only z
appears on the output tape once the machine halts. Notably, a TM need not ever enter either
Qaccept OT Greject, i Which case it runs forever.

Exercise 1.2. Sketch a TM which, given input string « € {0,1}", outputs 0 if 2 contains only
zeroes, and outputs 1 otherwise. (In other words, the TM computes the OR function on all
bits of z.) How many steps does your algorithm asymptotically take (i.e. state your answer
in Big-Oh notation)? Does it always halt? A formal definition in terms of @, 4, etc..., is not
necessary; simply sketch the TM’s action at a high level.

Languages and decision problems. Throughout this course, we assume strings consist of
bits, i.e. x € {0,1}". Recall that a language L is a subset of strings L C {0,1}", and that
computational problems are often modeled as follows: Fix a language L. Given input = € {0,1}",
is ¢ € L? This is known as a decision problem, since the answer is either YES or NO.

We say a TM M decides a language L if, given any input z € {0,1}", M halts and accepts
if € L (rejects if x ¢ L). Note this definition says nothing about the worst-case number
of steps required by M to decide L. Recall that there do exist undecidable languages, which
encode computational problems which provably cannot be solved by any TM in a finite amount
of time. Although undecidable problems do occur in quantum complexity, in this course we will
unfortunately not have a chance to pursue such directions.

Exercise 1.3. Recall that the canonical undecidable problem is the Halting Problem (HALT):
Given as input a description of a TM M and an input z, does M halt on input =7 Can you
prove that HALT is undecidable?

Exercise 1.4. Although HALT cannot be solved on a TM, on a real-life computer, HALT can
be solved - why? What is the crucial difference between a real life computer and a TM which
allows this distinction?

Significance. Two important remarks are in order. First, although the TM model nowadays
seems “obvious”, in that modern computers essentially work in a similar fashion (with the
notable exception of solid state drives, which unlike electromechanical drives, do not have a
physical “read-write head”), it is precisely due to Turing’s inspiration that modern computers
developed as they did. Moreover, although the informal concept of “algorithm” has existed for
millennia (e.g. Euclid’s algorithm for computing the greatest common divisor, dating to around
300 B.C.), the TM model finally gave a standard formal definition of what “algorithm” means.
This, in turn, allowed one to show certain computational problems simply cannot be solved by
any computer in finite time (modulo our next remark below).

The second important remark involves the longstanding Church- Turing thesis, which roughly
says that TMs truly capture the “full power of computing”. Namely, according to the thesis,
any model of computation can be simulated by a TM (slightly more precisely, if there exists
a mechanical process for computing some function f, then there also exists a Turing machine
computing f). Thus, if our goal is to understand the nature of computing (as it is here), it
suffices to restrict our attention to TMs. Note, however, that this is a thesis, and not a formally
proven theorem — indeed, there does not appear to be any way to prove the Church-Turing
thesis! And while it is generally believed that the Church-Turing thesis is on solid footing, a less
well-known strengthening of the thesis, known as the Fxtended Church-Turing thesis, appears
to potentially be in peril due to quantum computation (see section .

1.3.2 P and NP

P and NP are arguably the most famous exports of computational complexity theory. Roughly,
they denote the sets of decision problems which can be solved efficiently on a TM, and verified
efficiently on a TM, respectively. In this course, we define these complexity classes as follows.

Definition 1.5 (Polynomial-Time (P)). A language L C {0,1}" is in P if there exists a (de-
termimsti(ﬂ) TM M and fized polynomial v, : N+ RT, such that for any input x € {0,1}", M
halts in at most O(rr(n)) steps, and:

e (Completeness/YES case) If x € L, M accepts.
e (Soundness/NO case) If x ¢ L, M rejects.

Note that we define “efficient” computation, i.e. P, as taking at most polynomially many steps
in the input size.

Exercise 1.6. Are all languages in P decidable?
Exercise 1.7. Can the choice of polynomial r;, also depend on the input, 7 Why or why not?
A simple example of a decision problem in P is integer multiplication (MULTIPLY): Given

as input x,y € Z, and threshold t, is the product xy < t?7 (All inputs are implicitly specified
in binary.) The reverse of this problem is the integer factorization problem (FACTOR): Given

'In this course, all TM’s are assumed to be deterministic.

z € Z" and threshold ¢, does z have a non-trivial factor < ¢? In other words, do there exist
integers 1 < x <t and y such that xy = 27

Exercise 1.8. You have implicitly known since elementary school that MULTIPLY is in P.
Sketch a TM which decides MULTIPLY (i.e. recall your childhood algorithm for multiplication).

Exercise 1.9. If we change the definition of MULTIPLY to “given input x,y € Z, output the
product xy”, is this problem still in P?

There is a reason why multiplication is typically taught before factorization in school - unlike
MULTIPLY, FACTOR is not known to be in P. It can, however, be efficiently verified by a TM
if the TM is given some help in the form of a “short” /polynomial-size proof. Namely, given
candidate factors z,y € Z™ of z, a TM can efficiently check whether x < ¢ and whether zy = 2.
This is exactly the phenomenon encountered with puzzle games like Sudoku — filling out or
solving the puzzle is difficult, but if someone gives you the solution, verifying the solution is
correct is easy.

Definition 1.10 (Non-Deterministic Polynomial-Time (NP)). A language L C {0,1}" is in NP
if there exists a (deterministic) TM M and fized polynomials pr,rr : N — RY, such that for
any input € {0,1}", M takes in a “proof” y € {0,1Y**"™) haits in at most O(rp(n)) steps,
and:

e (Completeness/YES case) If x € L, then there exists a proof y € {0, 1}pL(") causing M to
accept.

e (Soundness/NO case) If x & L, then for all proofs y € {0, 1}pL("), M rejects.

Thus, FACTOR € NP. Note the only difference between P and NP is the addition of the
polynomial-size proof y. Also, recall the original definition of NP was in terms of non-deterministic
TMs; here, we shall omit this view, as non-determinism appears generally less useful of a concept
in quantum complexity theory.

The Boolean Satisfiability Problem. Finally, recall a canonical problem in NP is the Boolean
k-Satisfiability Problem (k-SAT): Given a Boolean formula ¢ : {0,1}" + {0,1} in conjunctive
normal form (CNF), is ¢ satisfiable? Here, a k-CNF formula has form (we demonstrate with
an explicit example for k& = 3)

¢ = (5131 VTQ\/.T4)/\(Tz\/ﬁ\/xg)/\-"/\(.%’7\/:U4\/l‘11),

where V and A denote the logical OR and AND functions, respectively, and Z; is the negation
of bit x;. More generally, a k-CNF formula is an AND over “clauses” of size k, each of which
is an OR over precisely k literals (a literal is either x; or Z; for some variable z;). We say ¢ is
satisfiable if there exists x € {0,1}" such that ¢(z) = 1.

Exercise 1.11. Why is k-SAT in NP? Does this still hold if k£ scales with n?
Exercise 1.12. Why is £-SAT not obviously in P?

Exercise 1.13. Is P C NP? Is NP C P?

1.3.3 The Cook-Levin Theorem, NP-completeness, and Reductions

What makes P versus NP such a prolific framework is that it captures many (if not most)
practical computational problems of interest — from finding shortest paths between pairs of
vertices in graphs, to solving systems of linear equations, to scheduling on multiple processors,
all of these problems are in NP (with the first two also being in P). Indeed, the number of
studied problems in NP number in the thousands.

But if the generality of P and NP is the “Eiffel Tower” of complexity theory, then the Cook-
Levin Theorem is its “Arc de Triomphe” — for the Cook-Levin theorem showed that, remark-
ably, to solve every problem in NP efficiently (and thus most practical computational problems
we might care about), it suffices to just solve a single problem — the Boolean Satisfiability
problem. Coupled with Karp’s “21 NP-complete problems”, the community quickly realized
that many longstanding problems which appeared difficult to solve, from 3-SAT to CLIQUE to
KNAPSACK, are all one and the same problem as far as complexity theory is concerned.

We now recall the formal theory of NP-completeness, for which we first require the notion of
a reduction.

Reductions. Intuitively, recall a reduction “reduces” one problem A to another problem B, so
that if we can solve B, we can also solve A. A real-life example of this which you likely applied
already at age two is this — the problem of opening the fridge (whose handle is too high up for
a toddler!) can be reduced to getting a parent’s attention; the ability to do the latter allows the
toddler to accomplish the former. In this case, the reduction is being computed by the toddler;
let us replace our toddler with a Turing machine.

Definition 1.14 (Reduction). Let A, B C {0,1}" be languages. A reduction from A to B is a
computabltﬂ function f :{0,1}* — {0,1}", such that for any input x € {0,1}*, z € A if and
only if f(x) € B. If such a reduction exists, we write A < B. We further say the reduction is
polynomial-time if the TM computing it runs in time polynomial in the input size, |x|; in this
case, we write A <, B.

In essence, a reduction maps an instance x of problem A to an instance f(z) of problem B such
that x is a YES instance of A if and only if f(x) is a YES instance of B.

Exercise 1.15. Define language ADD as the set of (k + 1)-tuples (z1,...,xx,t) C Z**1, such
that 1 + - -- + x; < t. Give a reduction from MULTIPLY to ADD. (This reduction is, in fact,
likely how you first learned the concept of multiplication in elementary school.) Is this reduction
polynomial-time? (Hint: Think about the encoding size of the input to MULTIPLY.)

Many-one/Karp versus Turing reductions. The notion of reduction in Definition is ar-
guably the most natural one, as it maps a single instance of A to a single instance of B (note the
mapping need not be a bijection). In the literature, this is typically called a many-one, mapping,
or Karp reduction. A generalization of many-one reductions which also appears in quantum
complexity theory is a Turing reduction. To define the latter, we refine our view of a Karp
reduction. Suppose we have access to a “black box” or oracle Op which magically decides B for
usﬂ Then, a many-one reduction can be viewed as mapping instance = of A to instance f(x) of

2A computable function f is one for which there exists a TM M which, given input z, halts and outputs f(x).

3This is typically formalized via an oracle Turing machine. Such a TM has an extra tape, denoted the oracle
tape, on which it gets to place a string corresponding to a query input. Once the TM’s query input is ready
on the query tape, the TM “calls” the oracle Op, which replaces the query input with the query output on
the query tape in a single step.

B, and then immediately feeding f(z) to the oracle Op to obtain the answer to the question: Is
x € A? In particular, we call the oracle Op precisely once, and immediately return its output
as our final answer. In a polynomial-time Turing reduction, we relax the latter constraint so
that Op can be called polynomially many times, and we may postprocess the answers to these
queries using any polynomial-time computation we like before returning a final answer.

Exercise 1.16. Sketch a polynomial-time Turing reduction from the problem of finding a de-
sired number in a sorted list of numbers to the problem of comparing which of a pair of integers
is larger. What overhead does your reduction asymptotically require, if we treat each num-
ber as occupying a single cell of the TM’s tape for simplicity? Does this overhead change if
we allow the TM random-access, i.e. the ability to jump to any desired cell in a single time step?

There is formal evidence that many-one and Turing reductions are not the same in terms of
“reduction power”. A specific example in quantum information theory where this distinction
seems to occur is the Quantum Separability Problem: Given a classical description of a bipartite
quantum state, we wish to determine if the state is entangled. This problem is strongly NP-hard
under polynomial time Turing reductions, but it remains open for over 15 years whether a similar
result holds under polynomial-time many-one reductions. (Until 2019, a similar distinction also
held for the genuinely “quantum” problem known as the CONSISTENCY problenﬂ which
since 2006 only had a known QMA-hardness proof under Turing reductions. Here, QMA is a
quantum generalization of NP, and will be discussed in future lectures.)

NP-completeness. With reductions in hand, we can recall the definition of NP-hard, which
in turn allows us to define NP-complete.

Definition 1.17 (NP-hard). A language B C {0,1}* is NP-hard if, for any language A € NP,
there exists a polynomial-time reduction from A to B.

Definition 1.18 (NP-complete). A language B C {0,1}" is NP-complete if it is both in NP
and NP-hard.

Note that the definition of completeness for NP extends naturally to many other complexity
classes. For example, we may replace NP with an arbitrary class C' and define a lanuage as
C-complete if it is both in C and C-hard. However, a subtlety in doing so is that depending
on the class C, we may wish to use a different notion of reduction than “polynomial-time”.
For example, for P-complete problems, the notion of reduction used is sometimes a “logspace”
reduction, meaning it should use at most a logarithmic amount of space. In this course, we shall
clearly state (unless the instructor forgets) if a notion of reduction other than polynomial-time
is used.

Intuitively, recall that NP-complete problems are the “hardest” problems in NP, and as
far as polynomial-time reducibility is concerned, they are all equivalent in difficulty. (The
latter statement is not generally true if one considers other definitions of “difficulty”, such as
approximability instead of exact solvability. As far as, say, approximability is concerned, some
NP-complete problems really are “harder” than others.) In general, a C-complete problem for
complexity class C' should be thought of as “capturing” the difficulty of class C.

4“CONSISTENCY is roughly defined as follows. The input is a set of k-qubit reduced density operators p; acting
on subsets of qubits S; C [n], respectively. The question is whether there exists a global density operator p
acting on all n qubits, such that for each ¢, Try,)\ s, (p) = pi.

The Cook-Levin Theorem. The canonical NP-complete problem has traditionally been 3-SAT,
as established by the Cook-Levin theorem (which showed NP-completeness for SAT) and Karp’s
followup work (which showed NP-completeness for 3-SAT). Here, SAT is the generalization of
k-SAT in which the clauses can be of arbitrary size.

Theorem 1.19 (Cook-Levin theorem). SAT is NP-complete.

An example of a reduction. Let us recall how reductions work in practice by showing 3-SAT
is NP-hard under polynomial-time mapping reductions.

Lemma 1.20. 3-SAT is NP-complete.

Proof. Containment in NP is trivial. We sketch a reduction from SAT, which by Theorem [I.19|
is NP-complete. The idea is as follows: Let ¢ : {0,1}" — {0,1} be an input SAT instance.
We sketch how to efficiently construct a 3-SAT instance ¢’ : {0,1}" — {0,1}, such that ¢ is
satisfiable if and only if ¢’ is.

Let ¢ be an arbitrary clause of ¢ of size s, so that we may write

c= (1071 V lc72 VeV lc’s)

for arbitrary literals [.; (recall a literal is a variable which may or may not be negated). We
show how to map this to a pair of clauses ¢; and cg of sizes s — 1 and 3, respectively. Introduce
a new variable y., and define

C1 = (lc,l \ lc,2 V.V lc,372 \ yc) C2 = (lc,sfl \ lc,s \ E)

Note that the new variable y. will only occur in this particular pair of clauses. This operation is
clearly polynomial-time, and repeating this until all clauses have size 3 also takes polynomial-
time. We leave correctness as an exercise.

Exercise 1.21. Suppose z. - - -z, satisfies clause ¢ above. Prove that there is a setting of
Ye such that x.1--- 2. sy, satisfies both ¢; and co. Similarly, show that if z.;---x., does not
satisfy clause c above, then z.1 - - - s, Y. cannot satisfy both c; and ¢y regardless of the setting
of ye. O

Tip. For any reduction proof, your proof should be structured as follows. First, give the
construction for the reduction itself. Second, argue what overhead or resources the reduction
requires. Third, prove correctness of the reduction.

Exercise 1.22. Prove that 3-SAT remains NP-hard even if we restrict each variables z; to
appear at most in the 3-SAT formula ¢. (Hint: Simulate equality constraints on pairs of
variables.)

1.3.4 The Extended Church-Turing Thesis

Let us close this lecture by revisiting the “crossroads” stated in Section Namely, we have
reviewed the notions of P, NP, reductions, and NP-completeness. All of this relied heavily on
the Turing machine model, which is “validated” by the Church-Turing thesis.

Due to Shor’s factoring algorithm, we now know that one of the following statements must
be false:

1. The Extended Church-Turing Thesis is true.
2. FACTOR cannot be solved efficiently on a classical computer.
3. Large-scale universal quantum computers can be built.

Formally proving any of these statements to be false would be a major step forward in theoretical
computer science (although the first statement is arguably the least “earth-shattering” of the
set, as it is less widely accepted). Here, the Extended Church-Turing Thesis says that any
“reasonable” or “physically realizable” model of computation can be simulated by a Turing
machine with at most polynomial overhead.

Any two of the three statements above together now imply the third statement is falsdﬂ For
example, if FACTOR is intractable classically and large-scale quantum computers can be built,
then the Extended-Church Turing thesis is false, since quantum computers can solve factoring
efficiently. This is a best-case scenario for quantum computation. In the opposite direction, if
the Extended Church-Turing Thesis is true and FACTOR is not classically tractable, then it
must be that even though quantum computers can theoretically solve FACTOR, unfortunately
a large-scale quantum computer cannot be built in practice.

Of course, here it should be noted that even in this “worst-case” latter scenario, all is not lost.
Non-universal (i.e. special-purpose) quantum computers may nevertheless be possible on a large
scale — indeed, there are already companies such as ID Quantique who build special-purpose
quantum devices for cryptographic tasks such as quantum key distribution! (Another important
point to bear in mind is that the development of quantum computation and information has
had a dramatic impact on our understanding of theoretical physics, such as in the areas of
entanglement theory, condensed matter physics, black holes, channel theory, etc... . This
gained knowledge is unaffected by whether or not large-scale universal quantum computers can
be built.)

5Some care is required when making this statement, since the first two statements of the “crossroads” are in
computational models which are studied in the asymptotic limit of large input sizes, whereas strictly speaking,
in practice the third statement refers to finite-size physical circuits where one does not necessarily care about
extraordinarily large input sizes.

10

2 Quantum computation review

“I think that a particle must have a separate reality independent of measurements.
That is, an electron has spin, location and so forth even when it is not being mea-
sured. I like to think the moon is there even if I am not looking at it.”

— Albert Einstein

“ .. experiments have now shown that what bothered Einstein is not a debatable point
but the observed behaviour of the real world.”
— N. David Mermin

Introduction. In Lecture 1, we reviewed the basics of classical complexity theory, including
Turing machines, P, NP, reductions, and NP-completeness. We now move to the quantum
realm and review the basics of quantum computation. Again, we shall move rather quickly, as
a beginning background in quantum computation is assumed for this course.

2.1 Linear Algebra

In this course, we shall discuss quantum computation exclusively from a finite-dimensional linear
algebraic perspective. For this, we begin with a quick review of linear algebraic terminology
and definitions.

We denote d-dimensional complex column vectors |)) € C? using Dirac notation, i.e. as

(a1
=1 : | (2.1)
Ya
for ¢p; € C. The term [¢)) is read “ket ¥”. Recall also that a complex number ¢ € C can be

written in two equivalent ways: Either as ¢ = a + bi for a,b € R and ¢ = +/—1, or in its polar

form as ¢ = re for r € R and 6 € [0,27). The complex conjugate of ¢ is ¢ = a — bi, or

equivalently ¢ = re=%.

Exercise 2.1. The magnitude or “length” of ¢ € C is given by |c| = v/cc*. What is the magni-
tude of € for any # € R? How about the magnitude of re??

The conjugate transpose of |¢) is given by

(] = (1,93, ..., ¥4), (2.2)

where note (¢| is a row vector. The term (1| is pronounced “bra ¢”. This allows us to define how
much two vectors “overlap” via the inner product function, defined as (¢|¢) = Z‘ijzl Y% ¢;, which
satisfies ((¢|¢))* = (¢]|v)). The “length” of a vector |¢) can then be quantified by measuring
the overlap of [¢) with itself, which yields the Euclidean norm, || [¢) ||, = /(¥|).

11

Exercise 2.2. Let [¢)) = %(1,2’)T € C?, where T denotes the transpose. What is (1|? How
about || [¢) [|57

Orthonormal bases. A set of vectors {|1);} C C? is orthogonal if for all i # j, (1|;]¥)); = 0,
and orthonormal if (|;]1)); = d;5. Here, d;; is the Kroenecker delta, whose value is 1 if i = j
and 0 otherwise. For the vector space C%, which has dimension d, it is necessary and sufficient
to use d orthonormal vectors in order to form an orthonormal basis.

One of the most common bases we use is the computational or standard basis, defined for C?
as

1 0 0
0 1 0
0 0 0
0) = = a-1=| (23)
0 0 0
0 0 1
Since {|0),[1),...,|d — 1)} is an orthonormal basis, any unit vector |¢)) € C? can be written as

|v) = Z?;()l a;li) for a; € C satisfying the normalization condition || [¢) ||, = 1.
Exercise 2.3. What does || |¢) ||, = 1 mean in terms of a condition on the amplitudes «;?

Linear maps and matrices. In this course, maps ® : C% — C? will typically be linear, meaning
they satify for any >, a;[;) € C¢ that @ (3, ay|13)) = >, i ®(|¢:)). The set of linear maps
from vector space X to) is denoted L£(X,)). For brevity, we use shorthand £(X) to mean
L(X,X).

Recall that linear maps have a matrixz representation. A d x d matriz A is a two-dimensional
array of complex numbers whose (7, j)th entry is denoted A(i, 5) € C for 4, j € [d]. To represent
a linear map ® : C% — C? as a d x d matrix Ag, we use its action on a basis for C?. Specifically,
define the ith column of Ag as ®(|i)) for {|i)} the standard basis for C%, or

Ap = [@(|0)),2(|1)),...,2(ld—1))]. (2.4)

In this course, we use both the matrix and linear map views interchangeably.

Exercise 2.4. Consider the linear map ® : C2 — C? with action ®(|0)) = |1) and ®(|1)) = |0).
What is the 2 x 2 complex matrix representing ®7?

Exercise 2.5. Given any d x d matrix A, what is Ali) for |i) € C? a standard basis state?

The product AB of two d x d matrices A and B is also a d x d matrix with entries AB(i, j) =
Z%zl A(i,k)B(k, 7). Note that unlike for scalars, for matrices it is not always true that AB =
BA. In the special case where AB = BA, we say A and B commute.

Exercise 2.6. Do the following Pauli X and Z matrices commute:

X:<(1)(1)> and Z:<(1)_01)? (2.5)

12

The image of a matrix A is the set of all possible output vectors under the action of A,
i.e. Im(A) := {|[¢) € C? | |¢) = A|¢) for some |¢) € C?}. The rank of A is the dimension of its
image, i.e. dim(Im(A)). The set of all vectors sent to zero by A is called its null space, i.e.
Null(4) := {|¢) € C?| Al)) = 0}. The Rank-Nullity Theorem says that these two spaces are
related via dim(Null(A)) 4+ dim(Im(A)) = d.

Exercise 2.7. Is the null space of matrix Z from Equation (2.5 non-empty? What is rank(Z)?

Matrix operations. We will frequently apply the complexr conjugate, transpose and adjoint
operations to matrices in this course; they are defined, respectively, as

A*(i,§) = (A(i, 5))* AT (i, 5) = A(j, 1) Al = (497, (2.6)

Note that (AB)' = Bt A", and similarly for the transpose.

The trace is a linear map Tr : £(C?) +— C summing the entries on the diagonal of A, i.e.
Tr(A) = Z?:l A(i,i). A wonderful property of the trace is that it is cyclic, i.e. Tr(ABC) =
Tr(CAB).

Exercise 2.8. In a previous exercise, you showed that X and Z do not commute. What is
nevertheless true about Tr(X Z) versus Tr(ZX)?

Outer products. Whereas the inner product mapped a pair of vectors [¢), |¢) € C? to a scalar,
the outer product produces a d x d matrix [¢)(¢| € £L(C?). For example,

|o><oy=<(1)>(1 0):(3 8) and 1><0|:((1)>(1 0):(? 8). (2.7)

More generally, the matrix |i)(j| € £(C?) has a 1 at position (i, j) and zeroes elsewhere. Thus
any matrix A € £(C%) written in the computational basis can written > Al)10 (-
hence see that

(ilAlj) = ZA NG ZA i, 31 Gl (1) ZA i, 36055 = Ali, §),

(2.8)
where the third equality follows since {|i)} forms an orthonormal basis for C¢. In other words,
(1| A7) simply rips out entry A(i, j).

Exercise 2.9. Observe that X from Equation [2.5[can be written X = |0)(1| + |1)(0]. What is
(0]X|0)? How about (0|X|1)? How can you rewrite Tr(X) in terms of expressions of the form

(i X15)7

Eigenvalues and eigenvectors. Given any matrix A € £(C%), an eigenvector is any non-zero
vector |[¢) € C? satisfying the equation

Alp) = Ay), (2.9)

for some A € C which is the corresponding eigenvalue.

13

Exercise 2.10. Show that |+) := %(|0> +11)) and |—) := %(|0) —|1)) are eigenvectors of X
from Equation (2.5). What are their respective eigenvalues?

A matrix A € {£(C?%)} is normal (ie. satisfies AAT = ATA) if and only if it is unitarily
diagonalizable, meaning it has spectral decomposition

d
AZZMWMML (2.10)

where \; and |\;) are the eigenvalues and corresponding eigenvectors of A, respectively. Equiv-
alently, there exists a unitary matrix (defined shortly) U such that UAUT is diagonal. Note
that if the eigenvalues A; are all distinct, then the eigenvectors |);) are uniquely determined
(and hence the spectral decomposition is unique). For normal operators, the eigenvectors form
an orthonormal set. (Aside: It is worth noting that some non-normal matrices A may also be
diagonalized, albeit with a similarity transformation more general than a unitary, i.e. by some
invertible S such that SAS™! is diagonal. In this case, the eigenvectors of A are no longer guar-
anteed to be orthonormal, but they are linearly independent. In this course, we will typically
take “diagonalizable” to mean “unitarily diagonalizable”.)

Exercise 2.11. Suppose A is unitarily diagonalizable and has two matching eigenvalues, e.g.
A1 = 2. (We then say A is degenerate.) Prove that there are infinitely many eigenvectors |v)
such that Al) = A\1]y).

Using the spectral decomposition, we see that Tr(A) has a simple expression in terms of A’s
eigenvalues for diagonalizable A, namely Tr(A) =). A\;. Let us quickly prove this claim:

Tr(A) =Tr (Z)\z'|>\z‘><)\z"> = Z)\iTr(|)‘i><)\i|) = Z)\iTr(O\z‘P\i)) = Z)\z (2.11)

Here, the second equality follows since the trace is linear, the third by the cyclic property of
the trace, and the last since the eigenvectors |)\;) are unit vectors.

Exercise 2.12. Prove that for diagonalizable A, rank(A) equals the number of non-zero eigen-
values of A.

Important classes of matrices. The following classes of matrices are ubiquitous in quantum
information.

1. Unitary matrices: A matrix U € L£(C?) is unitary if UU = T (equivalently, UtU = I).
Thus, all unitary matrices are invertible. The set of unitary matrices acting on space X
is denoted U(X).

Exercise 2.13. Prove that any eigenvalue of a unitary matrix U is of form e for some
0 € R. Thus, unitaries are high-dimensional generalizations of unit complex numbers.

2. Hermitian matrices: A matrix M € £(CY) is Hermitian if M = MT. The set of Hermitian
matrices acting on space X is denoted Herm (X).

14

Exercise 2.14. Prove that any eigenvalue of a Hermitian matrix M is in R. Thus,
Hermitian matrices are high-dimensional generalizations of real numbers.

. Positive (semi-)definite matrices: A Hermitian matrix with only positive (resp., non-
negative) eigenvalues is called positive definite (resp., positive semidefinite). Thus, positive
matrices generalize the positive (resp., non-negative) real numbers. We use M > 0 (resp.,
M = 0) to specify that M is positive definite (resp. positive semidefinite). The set of
positive semi-definite matrices acting on space X is denoted Pos (X).

Exercise 2.15. Prove that the X and Z matrices are not positive semi-definite.

. Orthogonal projections: A Hermitian matrix II € £(CY) is an orthogonal projection (or
projector for short) if TI? = II.

Exercise 2.16. Prove a Hermitian matrix IT € £(C?) is a projector if and only if all its
eigenvalues are from set {0,1}. Thus, projectors are high-dimensional generalizations of
bits.

Since a projector II's eigenvalues are 0’s and 1’s, its spectral decomposition must take the
form IT =, |4) (14|, where {|¢/;)} are an orthonormal set. Conversely, summing any set
of orthonormal {|¢;)} in this fashion yields a projector. A projector II has rank 1 if and
only if IT = |¢) (4| for some |¢) € C<.

Exercise 2.17. Let {|¢;)} C C? be an orthonormal set. Prove that IT = >, |¢;) (] is a
projector.

As for what a projector intuitively does — for any projector Il =). |4;)(v;| and vector
[

11j6) = (Z rwi><wi|) 6) = D [00) (o)) = D (Wil) € Span({[u)}).

where note (¢;|¢) € C. Thus, II projects us down onto the span of the vectors {|¢;)}.

Exercise 2.18. Consider three-dimensional vector |¢) = «|0) + B|1) + 7|2) € C? and
IT = |0)(0] + [1)(1]. Compute II|¢), and observe that the latter indeed lies in the two-
dimensional space Span({|0),[1)}).

Operator functions. A key idea used repeatedly in quantum information is that of an operator
function, or in English, “how to apply real-valued functions to matrices”. To apply function
f : R — R to a Hermitian matrix H € Herm (Cd), we take the spectral decomposition H =
> AilAi)(Ai], and define f(H) as

H:ZﬂMWW%

i.e. we apply f to the eigenvalues of H. Why does this “work”? Let us look at the Taylor series
expansion of f, which for e.g. f = e® is (the series converges for all x)

. o " $2 1,3
ef=) r=ltat bt (2.12)

n=0

15

The naive idea for defining e’ would be to substitute H in the right hand side of the Taylor

series expansion of e*:
H? H3
e =T+ H+— + =+, (2.13)
2! 3!
Indeed, this leads to our desired definition; that to generalize the function f(z) = e* to Hermi-

tian matrices, we apply f to the eigenvalues of H, as you will now show.

Exercise 2.19. Let H have spectral decomposition H =). Aj|A;)(A;|. Show that in Equa-

tion ([2.13),
H _ Aily. .
e =" eMA) (A
)

Exercise 2.20. Let f(z) = x2. What is f(X), for X the Pauli X operator? Why does this
yield the same results as multiplying X by itself via matrix multiplication?

Exercise 2.21. Let f(z) = \/z. For any pure state |1)) € C¢, define rank one density operator
p=[¥)(¥|. What is /p?

Exercise 2.22. What is v/Z for Z the Pauli Z operator? Is it uniquely defined?

2.2 Basic quantum computation

We now review the basics of quantum computation. Recall here there are two successively
more general notions of quantum states we utilize. The first, pure states, are the quantum
analogue of “perfect knowledge” about our state; in the classical world, a “pure state” means
your computer’s state is described by a fixed string x € {0,1}". The second, and more general
notion, is that of mized states, which model the notion of “uncertainty” about our state. The
classical analogue here would be a computer whose state is described by some distribution over
n-bit strings z.

2.2.1 Pure state quantum computation

We begin by discussing pure state quantum computation.

Individual systems

Recall that an arbitrary d-dimensional pure quantum state is represented by a unit vector
d—1
) =D auliy e C7.
i=0

If we interpret quantum mechanics literally (i.e. adopt the “Copenhagen interpretation” of
quantum mechanics), we take [¢)) to mean that our quantum system is in all d basis states |i)
stmultaneously, with some appropriate amplitudes «; € C. Typically, in this course we will work
with d = 2, i.e. qubit systems.

16

Quantum gates

In the pure state setting, the set of allowable operations or gates on [1)) € C? is the set of
d x d unitary matrices U € £(C?%) (i.e. UUT = UTU = I). In particular, this means pure-state
quantum computation is fully reversible, since all gates have inverses.

You have already seen two of the three single-qubit Pauli matrices below, which are unitary.
The fourth gate, H, is the Hadamard.

L I) B) B)

Exercise 2.23. What classical gate does Pauli X simulate? (Hint: Look at the action of X on
|0) and [1).)

Exercise 2.24. What is the action of Pauli Z on the standard basis? Give the spectral decom-
position of Z.

Recall the Z gate allows us to inject a relative phase into a quantum state. For example,

1 1 1 1 1 1
Z4) = Z [—=[0) + —=[1)) = —=Z|0) + —=2Z|1) = —[0) — —=|1) = |-).
[+ =2 (i) + o1}) = 5210) + 5 2I1) = o) = 1) = |-)
By relative phase, we mean that only the amplitude on |1) was multiplied by phase e/ = —1.

If all the amplitudes in the state were instead multiplied by €', we could simply factor out
the '™ from the entire state — in this case, '™ is a global phase, which cannot be detected via
experiment, and hence is ignored.

The Hadamard, on the other hand, allows us to create or destroy certain superpositions.
Namely, H|0) = |+) and H|1) = |—), and H|+) = |0) and H|—) = |1). In other words, H is
self-inverse.

Exercise 2.25. Verify that X, Y, Z, H are all self-inverse, e.g. the inverse of X is just X. What
does this mean about the eigenvalues of X? (Hint: Use the fact that the eigenvalues of any
unitary must lie on the unit circle.)

In this course, we work with the quantum circuit model, which allows us to graphically depict

gates:
) — X |-) — H |-) —{x HHE

These correspond to evolutions X|v¢), H|vy), and HX|¢), respectively. Each wire in such a
diagram denotes a quantum system, and a box labelled by gate U depicts the action of unitary
U. We think of time going from left to right; for the last circuit above, note that the X appears
on the “left” in the circuit diagram but on the “right” in the expression H X |t); this is because
X should be applied first to |¢), then H.

Exercise 2.26. Which Pauli matrix does the following circuit simulate? (Hint: Use the spectral

decomposition of X.)
0) —HH X HHF

17

Composite quantum systems

Thus far we have described single qudit systems. The mathematical formalism for describing
the joint state for multiple qudits is the tensor product, ® : C* @ C% — C%*%_ For input
vectors [th) € C¥, |¢) € C%, the (4, j)-th entry of their tensor product is (|¢0) ®|8)) (4,) = Vi ¢;,
where recall 1; and ¢; are the ith and jth entries of |¢)) and |¢), respectively. For example,

a 2 c\ | ad

b d) | be
It is crucial to note that the tensor product multiplies the dimensions of its input spaces. This
is why classical simulations of quantum mechanics appear to require an exponential overhead.

Exercise 2.27. What is |+) ® |0) (expressed in the standard basis)?

Exercise 2.28. What dimension do n-qubit states live in, i.e. what is the dimension of space
(C2)®”?

The tensor product has the following properties for any |a), |b) € C* and |c), |d) € C%:

(lo) +o)) @lc) = [a) @)+ [b) @ |c) (2.14)
@)@ (o) +1d)) = la) @le) +[a) @|d) (2.15)
c(la) @[e)) = (ca)) @) = |a) ® (c[c)) (2.16)

(o) @lent = la)f ®c)" = (a| ® (c] (2.17)

(el @ (c))(Ib) @ |d)) = (alb){c|d). (2.18)

For brevity, we shall often drop the notation ® and simply write 1)) ® |p) = |¥)|®).

Exercise 2.29. Using the properties above, prove that for orthonormal bases By = {|vg), [t1)}
and By = {|¢o), |¢1)} for C?, the set {|vo) @ |do), [vho) ® |¢1), 1) @ |o), [¥1) @ [1)} is an

orthonormal basis for C*.

Quantum entanglement. Recall that while any pair of states [¢),|¢) € C? can be stitched
together via the tensor product to obtain a d-dimensional state [¢)) ® |¢) € C%, the converse
is not always true: Given any d?-dimensional state |n) € C¥, it is not always true that there
exist 1), |¢) € C? satisfying |n) = 1) ® |¢). Such |n) are called entangled.

For pure bipartite (i.e. two-party) states, entanglement is easy to characterize fully via the
Schmidt decomposition, which says that any bipartite state |n) € C® @ C% can be written

min(dy,d2)—1

= D silaib),

=0

for non-negative Schmidt coefficients s; and orthonormal bases {|ai>}?;0 and {|bi>}?20 for Ch

and C%, respectively. The Schmidt rank of |n) is its number of non-zero Schmidt coefficients.

18

The canonical entangled two-qubit states are the Bell states

1
1) = —fo0) +

V2

1
ﬁ\lw

_ 1 1
) = o0 — 1)
1 1
) = s+ o)
) = ——jo1) - —10),

V2 V2
where we simplified notation by letting (e.g.) [0)|0) = |00).

Exercise 2.30. Prove the Bell states are an orthonormal basis for C%.

It is worth mentioning that while the Schmidt rank of a bipartite pure state [¢)) € C?®C? yields
an efﬁcientfl_-] test for entanglement in pure states, it is highly unlikely for there to be an efficient
test for entanglement in mixed states. This is because determining whether a mized state
p € L(CL®C?) is separable is (strongly) NP-hard. (Mixed states are reviewed in Section)

Two-qubit quantum gates. Two qubit gates are either a tensor product of one-qubit gates,
such as X ® Z or H® 1, or a genuinely two-qubit gate. For the former, recall the tensor product
acts on matrices as

o < b1 bo . b1 bo
. ar az . bl bg . ! b3 b4 2 b3 b4
A_<CL3 a4>’ B_<b3 64)7 A®B_) b1 b2 . bl b2
W\ bg by) T\ by by

The tensor product for matrices shares the properties of the tensor product for vectors, with
the addition of two rules: (A® B)(C ® D) = AC ® BD and Tr(A ® B) = Tr(A)Tr(B).

Exercise 2.31. What is Tr((X @ X)(X ® X))?

Circuit diagrams for tensor products of unitaries are depicted below: We consider the cases of
X®I1,I® Z,and H® H, respectively.

) x|) —— v —{H}-
) ———) —z |- ¢) —{H -

Exercise 2.32. What is the circuit diagram for Z ® Z? What is (X ® X)|0) ® |1)? How about
(Z®2)1)®]1)?

An important genuinely two-qubit gate is the controlled-NOT gate, denoted CNOT. The
CNOT treats one qubit as the control qubit, and the other as the target qubit. It then applies
the Pauli X gate to the target qubit only if the control qubit is set to |1). More precisely, the

! “Efficient” here means the test can be computed in time polynomial in the dimension, d, of the system.

19

action of the CNOT on a two-qubit basis is given as follows, where qubit 1 is the control and
qubit 2 is the target:

CNOT00) = [00) CNOT|01) = [01) CNOT|10) = |11) CNOT|11) = |10).

Exercise 2.33. What is the matrix representation for CNOT?

The circuit diagram for the CNOT is given by

[¥) l

)
Exercise 2.34. What is CNOT |[®™) for |®T) the Bell state? Based on this, give a circuit
diagram mapping |00) to the Bell state |®T).

Measurement

Recall that measuring or observing a quantum system allows us to extract classical information
from the system.

The most basic type of measurement is a projective measurement, given by a set of projectors
B = {II;}]" ;, such that) " II; = I, where the latter condition is the completeness relation. If
each II; is rank one, i.e. II; = |[¢;) (1], then we say B models a measurement in basis {|1;)}.
Often, we shall measure in the computational basis for C%, which is specified by B = {|z><z|}jl;01
for standard basis vectors |i) € C%.

Exercise 2.35. Verify that B = {|0)(0],|1)(1]} is a projective measurement on C2.

Given a projective measurement B = {I;}I*; C C? and quantum state |)) € C?, recall the
probability of obtaining outcome i € {0,...,m} when measuring |¢)) with B is given by

Pr(outcome i) = Tr(IT;|y) ($[11;) = Te(ITF|v) () = Te(IL|y)(]),

where the second equality follows by the cyclic property of the trace and the third since II; is
a projector. Upon obtaining outcome 4, our state [1) collapses to a state |¢') consistent with
this outcome, i.e.

)y = ILly) _ W) _ WLly)
ML) Ml /@ILIL[Y) /(@ L[)

Exercise 2.36. Let |¢)) = a|0) + B|1) € C2. Show that if we measure in the computational
basis, i.e. using B = {]|0)(0],|1)(1|}, then the probabilities of obtaining outcomes 0 and 1 are
la|? and |B]?, respectively. What is the postmeasurement state |) if outcome 0 is obtained?

The circuit symbol denoting a measurement of state [¢0) € C? in the computational basis is:

O

20

2.2.2 Mixed state quantum computation

Thus far, we have discussed pure state computation, where we know precisely the quantum state
in which our system is throughout the computation. We now review mized state computation,
for which we recall the notion of density operators.

Recall that a density operator p acting on C?% is a d x d Hermitian matrix satisfying two
properties: p = 0 (p is positive-semidefinite) and Tr(p) = 1. By the former, p has spectral
decomposition

m
p=> pilti)(¥il,

i=1
with eigenvalues p; and orthonormal basis {|1;)}. One way to interpret p is via the following
experiment: With probability p;, we prepare pure state |¢;). This, in particular, means that
any pure state |1) has density matrix [¢)(1]. Conversely, any rank one density operator by
definition must be of form p = |[¢)(¥)| (why?), and hence represents a pure state |¢)). The set
of density operators acting on C¢ is denoted D(C?).

Exercise 2.37. Prove that the eigenvalues {p;} of a density operator form a probability distri-
bution.

Exercise 2.38. Write down the density operator p = £|0)(0] + [1)(1| and state vector |1)) =
%\m + %H) How do they differ?

Exercise 2.39. What is the density matrix for pure state |¢)) = «|0) + §|1)?

The maximally mixed state. A special density matrix in £(C?) is the mazimally mized state
p = I/d, which is the state of “maximum uncertainty”. To see why, use the fact that for any
orthonormal basis {\wi>}?:1 for CY, 2?21 |1i)(1i| = I. In other words, for any orthonormal
basis {|¢i)}?:1, p represents the following experiment: Pick state |1);) with probability 1/d, and
prepare |¢;). Since this holds for any basis, p gives us absolutely no information about which
state |1) we actually have.

The partial trace operation. Density operators arise naturally in answering the question: For
any entangled state [1) € C? ® C2, how do we describe the marginal state of |¢) on (say) qubit
1?7 There is no way to answer this via pure states, since [¢)) is not a product state, and hence
does not factorize. Instead, we require a density matrix to describe the state of qubit 1, and
the correct procedure for obtaining it is the partial trace operation, which we now discuss.

For a bipartite density operator p system on parties A and B, the partial trace over B
“discards” system B, and hence has signature Trp : £L(Ch @ C%) — £(C%). To formally define
Trp, recall that we may write the (usual) trace of p € £(C?) as Tr(p) = >, p(i, i) = Z?:1<i|p|i>.
The partial trace over B applies this formula only to system B, i.e. for p € £L(C" @ C%),

d2

Trp(p) = > (Ia @ (il)p(Ia @ |i)).

i=1

Exercise 2.40. What should Trp(I/4) intuitively be? Compute Trp(I/4) to check your guess.

21

Exercise 2.41. More generally, prove that Trp(pa ® pp) = pa - Tr(pp) = pa for density ma-
trices pa, pB.

Ezample 1: Separable states. We have said that a pure state |¢) € CT @ C? is not entangled,
or separable, if and only if [¢)) = [1h1) @ |th2) for some [11) € CH and [iho) € C92. This idea

extends to the setting of mixed states as follows: A bipartite density matrix p € £(CH ® C%)
is unentangled or separable if

p= Zpi|¢i><¢i\ ® |di) (il

for some (possibly non-orthogonal) sets of vectors {|¢;)} € C% and {|¢;)} € C%, and where
the {p;} form a probability distribution. In other words, p is a probabilistic mixture of pure
product states. An example of a separable state is

= 21001 ® 10) (0] + 11| ® 1)1 (219)

Since the partial trace is a linear map, and since we know that Trg(p1 ® p2) = p1 - Tr(p2) = p1
for density matrices p1, p2, computing the partial trace of p for separable states is simple:

Trp (szwz %’ ® ’¢z ¢z> szTrB |¢z><¢z‘ @ M’z sz sz|¢z wz‘ TI' |¢z (z)z sz‘wz 1/%

Exercise 2.42. What is Trp(p) for p from Equation (2.19))?

Ezample 2: Pure entangled states. We compute the single-qubit state of the Bell state |®)
on qubit 1:

1
Trp(|27)(@F]) = 5Trp(|00)(00] +]00)(11] +[11)(00] + [11)(11])
1 1 1 1
= 510{0Tx(j0){O[) + 5 [0) (L Te(|0)(1]) + 5 [1){OTe(J1)(O]) + 5 1) (L[Te([1)(1])
1
= -1,
2
where we have used the linearity of the partial trace. Thus, the reduced state on qubit 1 for the

Bell state is maximally mixed, i.e. it is a completely random state about which we have zero
information.

Exercise 2.43. Show that Tra(|®1)(®T|) = /2.

Operations and measurements on mixed states

We close this lecture by generalizing our discussion on gates and measurements from the pure
state setting to mixed states.

Composite systems. If p4 and pp are density operators, then ps ® pp is a density operator.

22

Exercise 2.44. Prove the claim above. (Hint: The slightly trickier part is to show that the
tensor product preserves positivity — use the spectral decomposition for this.)

Unitary operations. For density operator p € D(C?) and unitary U € U(C?), the action of U
on p is given by UpUT.

Exercise 2.45. What is the action of any unitary U € U(C?) on the maximally mixed state,
p=1/d?

Measurements. For projective measurement B = {II;}!", C £(C?) applied to density oper-
ator p € D(C?), the probability of outcome i and postmeasurement state p' € D(C?) upon
obtaining outcome ¢ are

, IIpIl

Pr(outcome i) = Tr(I;p) and p = Te(ip)”
r{llip

Exercise 2.46. Show that the following important identity holds: For any bipartite state pap
and matrix Mp acting on B, it holds that

Tr(pABIA ® MB) = Tr(TI"A(pAB)MB).

In other words, measuring just system B of a joint state pap is equivalent to first discarding
system A of psp, followed a measurement on the reduced state on system B. Does this agree
with your intuition of how a local measurement should behave?

23

3 Bounded error quantum polynomial time

(BQP)

“An algorithm must be seen to be believed, and the best way to learn what an algo-
rithm s all about is to try it.”
— Donald Knuth

Introduction. With our required complexity theory and quantum computation refreshers cov-
ered, we now focus on the cornerstones of quantum complexity theory — “quantum P” and
“quantum NP”. Defining the former of these will be arguably straightforwardﬂ but the same
cannot be said for quantum “NP” — indeed, at present there is no “unique” definition of quan-
tum NP, and for all we know, the various definitions currently in the literature may indeed be
distinct entities.

This lecture begins by introducing the classical class BPP (Bounded-Error Probabilistic Poly-
nomial Time), followed by BQP (i.e. “quantum Promise-BPP”). The lecture will introduce
various fundamental concepts throughout, such as applications of norms to study error prop-
agation in quantum circuits, as well as the notion of a quantum universal gate set. Note that
while the quote atop this lecture is quite “hands-on” in nature, unfortunately we as a field are
generally not in a position yet to simply “try out” quantum algorithms, at least on a large
scale; indeed, we still have difficulty convincing ourselves the experiments we do run are doing
what we expect them to do! (Such verification is a key issue in so-called “quantum supremacy”
proposals, which may be discussed towards the end of the course.)

3.1 BPP

Recall from Lecture 2 that quantum computation is, in a rigorous sense, inherently probabilistic
(i.e. we apply a unitary map to our input state, and then measure in the standard basis, yielding
a probability distribution over outcomes). This raises the question of whether P is really the
correct starting point for generalizing to BQP, since in stark contrast, P is about deterministic
computation. A more suitable entry point seems to instead be Bounded-Error Probabilistic
Polynomial Time (BPP), which we now define.

Definition 3.1 (Bounded-Error Probabilistic Polynomial Time (BPP)). A language L C {0,1}"
is in BPP if there exists a (deterministic) TM M and fized polynomials sr,rr : N +— RT, such
that for any input © € {0,1}", M takes in string y € {0,1}**™ halts in at most O(rp(n))
steps, and:

e (Completeness/YES case) If v € L, then for at least 2/3 of the choices of y € {0, I}SL(”),
M accepts.

!This is a borderline false statement; we will need highly non-trivial facts such as the Solovay-Kitaev theorem
to make “quantum P” well-defined. But at least at a high level, the definition of “quantum P” is what one
might expect.

24

e (Soundness/NO case) If x € L, then for at most 1/3 of the choices of y € {0, 1}SL("), M
accepts.

We say M accepts (rejects) x in the YES case (NO case).

There are three remarks worth making here. First, the definition of BPP looks suspiciously like
NP — indeed, in NP we also had strings y, only we called them “proofs”.

Exercise 3.2. How does the definition of BPP differ from that of NP?

The standard way to interpret y for BPP is as a uniformly random string over {0,1}". In other
words, one thinks of a BPP machine M as a standard TM that also takes in a random string
y as part of its input. With this view, in a YES case, M accepts with probability at least
2/3, and in the NO case, M accepts with probability at most 1/3. Second, under standard
derandomization conjectures, it is generally believed that P = BPP. Proving this, however, is
a longstanding open question.

Third, as phrased, BPP is a class of decision problems, i.e. every input x is either in L or not
in L. This has a peculiar side-effect — on any input x, the machine M must accept or reject
with probability at least 2/3. It turns out that this subtle restriction is unnatural when moving
to the quantum setting. Thus, BPP is not yet the correct starting point for generalizing to the
quantum setting. Instead, we first need to move to promise problems.

3.1.1 Syntactic versus semantic classes, PromiseBPP, and what will really be
PromiseBQP

To motivate PromiseBPP, we discuss syntactic versus semantic complexity classes.

Syntactic versus semantic classes. There is a subtle, but important difference, between how
(say) P and NP are defined, as opposed to BPP. Namely, if we fix an appropriate encoding of
TMs into strings, such that TM M has encoding (M) € {0,1}", then given a string = € {0,1}",
one can easily check if x = (M) for some P machine M. (For example, the encoding can
explicitly state a threshold in terms of number of steps, after which the machine forcibly halts
and outputs 0 or 1.) Complexity classes with this property are called syntactic. BPP, on the
other hand, does not appear to have this property — how could any reasonable encoding of a
TM M into strings encode the property that on all inputs, M accepts or rejects with probability
at least 2/37 (Indeed, deciding whether a TM has this property is undecidable, which follows
from Rice’s Theorenﬂ) In other words, given x € {0,1}", we cannot even decide whether z is
a valid encoding of some BPP machine M!
Let us see how this causes problems. Consider the set of strings

L ={(M,z) | M is a P machine which accepts z € {0,1}"}.

Clearly, L € P, since a P machine can check if (M) encodes a valid P machine first, and if so,
run M on x and output M’s answer. Now, consider instead

A= {<M,x, 1t> | M is a BPP machine which accepts z € {0,1}" in at most ¢ steps}.

2Rice’s Theorem says that, for any “non-trivial” property P, deciding whether a given TM M has property P is
undecidable. Here, “non-trivial” means there exists at least one TM with property P, and not all TMs have
property P.

25

Since BPP is a semantic class (i.e. we don’t know how to check if (M) is a valid encoding of
a BPP machine), A is not obviously in BPP. (Indeed, A is actually #P-complete, and thus
unlikely to be in BPP!)

Exercise 3.3. Why doesn’t the naive strategy we used for L show A € BPP? In other words,
why can a BPP machine not just try to simulate M on x?

This is a rather ridiculous state of affairs. Certainly the problem encoded by A is rather natural,
and “feels like” it should be in “probabilistic polynomial time”.

To circumvent this, we introduce a “promise” — namely, any algorithm attempting to decide
A is “promised” that M is a valid BPP machine, and if this promise is “broken” (i.e. M is not
a valid BPP machine), then A is allowed to act arbitrarily. We may formalize this as follows.
Recall a language L € {0,1}" partitions {0,1}" into two sets: Lyes (YES instances) and Ly,
(NO instances).

Definition 3.4 (Promise problem). A promise problem A is a partition of {0,1}" into three
sets: Ayes (YES instances), Ano (NO instances), Ainy (invalid instances).

Definition 3.5 (PromiseBPP). A promise problem A = (Ayes, Ano, Ainv) is in PromiseBPP if
there erists a (deterministic) TM M and fized polynomials sa,r4 : N +— R such that for any
input z € {0,1}", M takes in string y € {0,1}*4") halts in at most O(r4(n)) steps, and:

e (Completeness/YES case) If v € Ayes, then for at least 2/3 of the choices of y € {0, 1}saln),
M accepts.

e (Soundness/NO case) If x € Apo, then for at most 1/3 of the choices of y € {0, 1}SA(”),
M accepts.

e (Invalid case) If x € Ainy, then M may accept or reject arbitrarily.
Exercise 3.6. What are the differences between the definitions of BPP and PromiseBPP?
Exercise 3.7. Why does the naive strategy for deciding L succeed in placing A € PromiseBPP?

Why all the fuss? There is a reason we are clearly delineating BPP from PromiseBPP
here. The classical complexity theory community correctly distinguishes between BPP and
PromiseBPP, as both are meaningful classes classically. The quantum complexity community,
on the other hand, has a nasty habit of using terminology BQP to really mean PromiseBQP —
this is not entirely surprising, as essentially any problem we care about quantumly is a promise
problem. In an act of preserving sanity, the community has thus quietly decided not to carry
around the “Promise” moniker each time BQP is mentioned. Let us hence clearly state the
following, and promptly forget about it:

Throughout these notes, BQP shall be taken to mean PromiseBQP.

This distinction may seem petty, but it is actually crucial. For exampleEL whereas BPP does

3 Another illustration of this distinction is that BPP does not have time hierarchy theorems, but PromiseBPP
does. Here, a time hierarchy theorem roughly says that a PromiseBPP machine running in, say, n’> steps
can solve more promise problems than a PromiseBPP machine running in only n steps. Intuitively, a time
hierarchy theorem is exactly what one would expect to hold for a reasonable model of computation, so in this
sense PromiseBPP seems more natural than BPP.

26

not have known complete problems (due to its semantic definition), we shall see in an upcoming
lecture that BQP (i.e. PromiseBQP) does have complete problems.

3.2 BQP

BQP is the natural quantum generalization of PromiseBPP: It is the set of promise problems
which can be solved by a poly-time quantum computation with bounded error. To make this
formal, we first make a switch from Turing machines to circuits.

From Turing machines to circuits. Although quantum Turing machines are well-defined, it
turns out that quantumly, the most natural computational model to work with is the circuit
model (i.e. applying gates like Pauli matrices to wires, as done in Lecture 2). Unlike a TM,
however, which can take strings x € {0,1}" of arbitrary size as input, a circuit’s size (by which
we mean number of wires here) is fived. Thus, given an input x € {0,1}", we require an efficient
algorithm for generating a description of a circuit C' which takes inputs of the right size, |z|.

Definition 3.8 (P-uniform quantum circuit family). A family of quantum circuits {Q,} is
called P-uniform if there exists a polynomial-time TM M, which given as input 1™, outputs a
classical description of Q..

Exercise 3.9. Why does M take in 1™ as input, as opposed to n in binary as input?

We can now define BQP (which again, really means PromiseBQP).

Definition 3.10 (Bounded-error quantum polynomial-time (BQP)). A promise problem A =
(Ayes, Ano, Ainv) is in BQP if there exists a P-uniform quantum circuit family {Qn} and poly-
nomial q : N — N satisfying the following properties. For any input x € {0,1}", Q,, takes in
n+q(n) qubits as input, consisting of the input x in register A and q(n) ancilla qubits initialized
to |0) in register B. The first qubit of B, denoted B, is the designated output qubit, a measure-
ment of which in the standard basis after applying Q,, yields the following (where measuring |1)
in the output qubit By denotes “accept”):

e (Completeness/YES case) If x € Ayes, then Qy accepts with probability at least 2/3.
e (Soundness/NO case) If x € Ay, then Q. accepts with probability at most 1/3.

e (Invalid case) If x € Ainy, Qn may accept or reject arbitrarily.

Exercise 3.11. Observe that a key difference between PromiseBPP and BQP is that the former
can be viewed as a deterministic TM taking in a “random string” as input. In other words,
the randomness could be “decoupled” from the TM. Do you think the randomness inherent in
quantum cicuits could be “decoupled” from the quantum circuit), in BQP?

Error reduction. Note that the completeness/soundness parameters 2/3 and 1/3 are not special
(for both PromiseBPP and BQP). By simply repeating the circuit @, polynomially many times
in parallel, measuring each output qubit, and then accepting if and only if a majority of the
runs output 1, we may improve the error parameters to 1 — 2™ for completeness and 2™ for
soundness.

27

Exercise 3.12. The error reduction claim above can be proven formally via the following
Chernoff bound: If X1,...,X,, are identically and independently distributed random variables
over {0, 1}, such that each X; has value 1 with probability 1/2 + €, then the probability that
oty X, is strictly smaller than m/2 is at most e~2¢*m_ With this bound in hand, how many
repetitions m of a BQP circuit @), are required to get the completeness to at least 1 — 2777

3.2.1 Norms and perturbations to quantum gates

We will frequently need to measure distances between states and gates in this course; a crucial
example of this will be in Section below on universal gate sets. For this, we need to
broaden our repertoire of norms.

Norms on matrices. Just as the Euclidean norm || |¢) ||, gives a notion of “size” for vector
|1}, one may define norms on matrices. The two most common ones in quantum information
are:

e Spectral Norm: The spectral norm of operator M € £(C?) is

M [l = max M)l -

unit vectors |1)eC9

Thus, || M ||, measures the maximum amount M can “stretch” some vector in CY.

Exercise 3.13. Define M = 3|0)(0]. What is || M |7 Visualize the action of M in the
2D real Euclidean plane to intuitively confirm your calculation.

e Trace Norm: The trace norm of operator M € L£(C?) is
IM |l := Te(|M]) = Tev MM,

where note |M| and vV MTM are operator functions.

Exercise 3.14. Let M be Hermitian with eigenvalues A;. Prove that || M ||,, = >, [\il.

Exercise 3.15. For unit vectors |1, |¢) € C?, prove that || [¢) (1| — |¢) (o] ||, = 21/ 1 — [(¥]#)|*.
Hint: Observe that M = |y) (| — |¢)(¢| is rank at most 2. Combined with the fact that
Tr(M) = 0, this should reveal something about the structure of the eigenvalues of M.
Finally, consider what the eigenvalues of Tr(M?) look like to complete the picture.

By definition of a norm (which should be thought of as a generalization of the absolute value
function to higher dimensions), both the spectral and trace norms satisfy (1) the triangle in-
equality (| A+ B <Al + 1 Blly)s (2) absolute homogeneity (|| aM ||, = |a| || M ||, for
a € C), and (3) positive definiteness (if || M ||, = 0 then M = 0). However, they also satisfy
three powerful properties:

o The Hélder inequality, which for the spectral and trace norms yields |Tr(ATB)| < || A || || B [|y,-

e Submultiplicativity, which says || AB ||, < || Al | Bllo-

28

e Invariance under unitaries, i.e. for any unitaries U and V, |[UMV ||, = || M ||OOE|

Motivating the trace norm. The trace norm may seem an odd quantity, but it has a remark-
ably important operational interpretation. Let us play a game: I have two density operators
in mind, p,o € £(C%), of which you know a complete classical description. I privately flip a
fair coin — if I get HEADS (respectively, TAILS), I prepare p (respectively, o) as a quantum
state and send it to you. Your task is to guess, using any measurement allowed by quantum
mechanics (efficiently implementable or not), whether I sent you p or o. Intuitively, if p and
o are “close” to one another, this should be “hard”, and if they are “far”, then, it should be
“easy”. It turns out that the right way to measure “closeness” is the trace norm, in that your
optimal probability of winning this game is precisely

1

1
§+Z|’P—0Htr-

This is a deep statement worth reflecting on — the trace norm characterizes how distinguishable
two quantum states are.

Exercise 3.16. What is your probability of winning the game above if p = ¢? How about if
p = 10)(0] and & = [1)(1]?

Perturbations to quantum gate sequences. With norms in hand, we can study how errors
affect quantum computations. Suppose we have a quantum circuit U = U,,, - - - UsU; for unitary
operators U; in mind, but experimentally we are not able to implement each U; perfectly. In-
stead, for each i, we can implement some unitary U/ satisfying || U; — U/ || < e for || - || a unitarily
invariant norm. The following useful lemma tells us how this per-error gate accumulates as we
apply each U;.

Lemma 3.17. Let ||-|| be a norm satisfying unitary invariance. Let U = U,,---UU; and
U' =U],---UU] be a pair of quantum circuits, for unitaries U;, U] satisfying |U; — U] || < €
for alli € [m]. Then, ||U —U"|| < me.

Proof. We proceed by induction on m. The base case m = 1 is trivial. Assume the claim holds
for m > 1, and for brevity, let V- =U,,—1---U; and V' =U),_; ---U;. Then,

| U=U"| = [[UxV =0,V +UnV' = UV
= || Un(V=V")+ (U, = Ua)V') ||

| Un(V = V') || + || (U}, = Un)V" ||

|V =V +]| Us = Un ||

< (m—1)e+e,

IN

where the first statement follows by adding and subtracting U,,,V’, the third by the triangle
inequality, the fourth by unitary invariance, and the fifth by the induction hypothesis. O

4There is an elegant reason why these norms satisfy invariance under unitaries — the norms are really “classical”
norms in disguise, in that they do not depend on the choice of basis. Define for vector |¢) € C? the
p = 27) Recall that every matrix M € C21%92 can be written with respect to its singular value decomposition
M = mndnda g1 (), for singular values s; € RY, orthonormal left singular vectors {|l;)} € C*, and
orthonormal right singular vectors {|r;)} C C%2. (This should remind you of the Schmidt decomposition,
which is no coincidence.) Then, the spectral and trace norms of A are just the co- and 1-norms applied to
the vector of singular values of A, respectively. But since unitaries U,V applied as UMYV leave the singular
values invariant, it follows that these norms are unitarily invariant.

29

Thus, the error propagates nicely (i.e. linearly). As far as BQP is concerned, if we make an
exponentially small additive error per gate, the overall error will hence be negligible (since BQP
circuits contain polynomially many gates). Indeed, we can even get by with sufficiently small
inverse polynomial additive error per gate.

Exercise 3.18. How can the requirement that the norm be unitarily invariant in Lemma |3.17]
be relaxed? (Hint: Which of the other properties of the trace and spectral norms would also
suffice?

How measurement statistics are affected by errors in quantum circuits. We have estab-
lished how gate-wise error propagates through a circuit. Now comes the real question — as
an experimenter in the lab looking at actual measurement statistics, what do the error bounds
of Lemma [3.17 mean? For this, we state the following lemma, whose proof is the subsequent
exercise.

Lemma 3.19. Let p € D(C?) be a quantum state, I € Pos (C%) a projector, and U,V € U(C?)
unitaries such that ||U — V||, < €. Then,

Te(LIUpUT) — Te(1IV pV't)) < 2.

In words, any projective measurement outcome I1’s probability changes by at most 2¢ when
evolving under V instead of U.

Exercise 3.20. Prove Lemma using an approach similar to the proof of Lemma [3.17
(Hint: Begin by writing the left hand side as ‘Tr(H(U pUT — VpVT))‘ and applying a useful
inequality.)

3.2.2 Universal quantum gate sets

With Lemma in hand, we can now discuss the fundamental notion of a universal quantum
gate set. As computer scientists, in this course we shall measure the “cost” of a circuit by the
number of gates it contains. From an experimental standpoint, however, since the set /(C?) is
uncountably infinite, this seems somewhat unrealistic — implementing an arbitrary element of
an uncountable set on demand is a tall order. Instead, we follow the classical route and recall
that the NOT and AND gates together are universal for classical computation; in other words,
any classical circuit can be rewritten using NOT and AND.

Amazingly, a similar statement holds quantumly — there exist finite universal gate sets
S CU(CY), one of which is S = {H,7/8, CNOT}. Here,

1 0
7T/8:<0 eiﬂ'/4>'

S is universal in the intuive sense that any unitary U € U(C?) can be approximated with gates
from S. The question is: How good is the approximation, and what overhead does it incur?
There are two parts to the answer. First, an arbitrary unitary U € U((C?)®") can be
decomposed ezxactly as a product of CNOT gates and arbitrary 1-qubit gates. However, this
decomposition is not necessarily efficient, requiring O(n?4™) gates in the worst case. But at
least we are reduced to needing only a single 2-qubit gate, the CNOT, and now we need to
approximate arbitrary 1-qubit gates. For this, the Solovay-Kitaev theorem says that an arbitrary

30

1-qubit gate can be approximated within e additive error (with respect to, say, trace or spectral
norm) using O(log®(1/¢)) gates from {H,7/8} for ¢ = 2.

For the purposes of BQP, the overhead incurred by the Solovay-Kitaev theorem is very good
— we may get sufficiently small inverse polynomial additive error with only a polylogarith-
mic overhead in gate count. As a result, BQP takes on a particularly well-motivated form:
Without loss of generality, we may assume in Definition that the Turing machine gen-
erating the P-uniform quantum circuit family only needs to pick gates from the universal set
S={H,n/8,CNOT}.

3.2.3 The BQP subroutine problem

The error reduction of BQP turns out to have a “boring” but crucial implication — if we have a
BQP circuit solving a particular promise problem A, then we can use that circuit as a subroutine
in solving other problems.

Classically, the analogous statement is trivial, as you know from the many times you have
likely called (say) methods in Java as subroutines. So why is it non-trivial quantumly? Here is
a sketch: Suppose we have a quantum circuit C, which applied to state |x)|0™) (for z € {0,1}"
the input) produces state [¢)) on n + m qubits. If C accepts with probability exactly 2/3 (i.e.
x € Ayes), then we may write

1 2
Clz)[0™) = |¢) = \/;|0>1|¢6>2,...7n+m + \/;I1>1|¢’1>2,..,n+m

for some [¢f),[v)) € (C?)®M+m=1)_ Tn other words, the output qubit is potentially highly
entangled with the remaining n + m — 1 qubits (which happens, if say [¢{) and |¢]) are or-
thogonal). Since we are treating C' as a subroutine, presumably we will only act in the future
on this output qubit, and not the remaining n 4+ m — 1 qubits output by C. But recall the
principle of deferred measurement states that we might as well thus assume that the remaining
2,...,n+m—1 have been discarded or traced out. Thus, if the output qubit is indeed entangled
with the remaining qubits, we are in trouble — our machine will effectively be in a highly mixed
state after we make the subroutine call! This is not at all what we were expecting. However, if
we first reduce the error of C via parallel repetition, we know that we instead have (say)

- 1 1
CL)|0™) = 19) = |/ 5z |0, + /1= 5 D192, b

While qubit 1 can still be entangled with qubits 2,...n 4+ m in this case, note that the vast
majority of the amplitude is on the |1); branch — so tracing out qubits 2, . .., m+n will have only
exponentially small disturbance on our state. Since our computation takes only polynomially
many steps and is bounded error, such an exponentially small error at each step is negligible.

Exercise 3.21. One way to formalize the idea that the error is negligible is as follows. Define
unit vectors:

[0) = al0)1[v0)2,..ntm + BIL)11Y1)2,. ntm,
o) = |L1]h)2,. ntm.-

Prove that || [¢0) — [¢) |, = v24/1 — Re(B), for Re(8) the real part of j.

31

Exercise 3.22. Suppose || [¢)) —|¢) ||, < e. For any measurement projector II, how can you
upper bound the quantity |Tr(II|¢y)(¢|) — Tr(I1]|¢)(4|)| in terms of €? The precise formula is
slightly messy, so it suffices to sketch which inequalities/equalities to chain together to derive a
bound.

3.3 Relationship to other complexity classes

Given that quantum computers appear to outperform classical ones when it comes to the fac-
toring problem, a natural question arises: Just how powerful are quantum polynomial-time
computations? With BQP acting as a reasonable formal definition of what we view as “efficient
quantum computation”, we are in a position to make progress on this question.

Containment in PSPACE. The naive hope is that since quantum computers can put n-qubit
systems into 2" states simultaneously, perhaps one can simulate exponential-time classical com-
putations in BQP. In other words, perhaps EXP C BQP, for EXP the analogue of P in which
the Turing machine may take exponentially many steps. This hope is dashed rather easily,
however, via the following preliminary theorem, whose simple but elegant proof using a notion
of “Feynman path integrals” repeatedly finds applications in the field.

Theorem 3.23. BQP C PSPACE.

Recall that PSPACE is the set of decision problems decidable by a polynomial-space Turing
machine, formally defined as follows.

Definition 3.24 (Polynomial-Space (PSPACE)). A language L C {0,1}" is in PSPACE if
there erists a (deterministic) TM M and fized polynomial sp, : N+ RT | such that for any input
x €{0,1}", M uses at most O(sy(n)) cells on its work tape, and:

e (Completeness/YES case) If x € L, M accepts.

o (Soundness/NO case) If v ¢ L, M rejects.
Exercise 3.25. How many steps can a PSPACE algorithm take in the worst case?

Exercise 3.26. Show that BQP C EXP.

Proof of Theorem[3.23 Let x be an instance of any BQP promise problem A = (Ayes, Ano, Ainv)
of length n. Then, there exists a poly-time TM M which given |z| as input, outputs a quantum
circuit @, = Uy ---Up of 1- and 2-qubit gates. Measuring the output qubit of M in the
standard basis outputs 1 with probability at least 2/3 if x € Ay, or outputs 1 with probability
at most 1/3 if x € A,,. Thus, it suffices to sketch a PSPACE computation which estimates the
probability of outputting 1 to within additive error, say, 1/12.

Let TI; = |1)(1] € £(C?) be a projective measurement onto the output qubit of Q,, and
[1) = Qn|x)|09™). The probability of outputting 1 is

Prioutput 1] = Tr(Ily [¢)(¢]) = (Y [IL1[¢).

32

Remark. Note that |1) is an n + q(n) qubit state, but 111 acts only on one qubit. To ensure
dimensions match, throughout this course we implicitly mean 1y @ Iy 5 yqm) 0 such cases.
This implies the probability of outputting 1 can equivalently be written

Prloutput 1] = Tr(IIy - Tro_ppq(n) ([10) (¥])).

Expanding the definition of |1},
Prloutput 1] = (z{0/™|U}, - U Uy, --- Unf) 0.

Now, let us do something seemingly trivial — insert an identity operator I between each pair
of operators, and use the fact that for N-qubit I, we may write I = 2356{0 1 |z) (x| (e I
diagonalizes in the standard basis with eigenvalues 1). Then:

Prloutput 1] = (z[(0%™|.1-Ul - I---T-Uf - T-T-T-Up-I---1-Uy-TI-|z)|09M)
= > (@[OT ™)y) (1 |US, J2) - - (@am 41| UL [22m y2) (@om 2| (|2)]07M)).

$1,---,x2m+2€{071}n+q(")

For each fixed 1, ..., Zmy12, note the summand is a product of 2m + 3 complex numbers of the
form (for example) (21U |z2). Since each U is at most a 2-qubit unitary, and since (z;|U |)
is just the entry of U at row x; and column z;, we may compute this product in polynomial
time.

Exercise 3.27. Convince yourself that one may compute (x|l; . ,—1 ® Uyly) in polynomial
time, for z,y € {0,1}" and U a 1-qubit unitary acting on qubit n.

Exercise 3.28. There is a subtlety in the previous exercise we must be wary of: If each term
in the summand is specified to (say) O(1) bits, then how many bits can the product of all
2m 4+ 3 terms have? Does this contradict your argument that the multiplication can be done in
polynomial time? What if each term in the summand is specified to O(n) bits?

Returning to the proof, we are essentially done — for each summand takes polynomially
many steps on a TM to compute (and hence polynomial space), and the number of summands
is (27F9()2m+2 - where by definition of BQP, m is polynomially bounded in n. Thus, al-
though the number of summands is exponential in n, we can simply use a counter (requiring
[log((2n+a(n))2m+2)] bits, i.e. polynomially many bits) to iterate through all summands one by
one, each time adding the current summand to a running total. The final value of the running
total is, by definition, the acceptance probability of circuit @, as desired.

Exercise 3.29. How does the addition of all summands grow the number of bits required to
represent the answer? In other words, given N n-bit rational numbers z;, what is an upper
bound on the number of bits required to represent), z;?

Remark. We noted at the outset of the proof that it would suffice to compute the acceptance
probability of Qn to within, say, 1/12 additive error. So how accurate was our polynomial-
space summation technique? This depends on how many bits of precision are used to specify the
entries of each unitary U;. If the gates U; can be specified exactly using poly(n) bits, then the

33

summation is perfect. If, however, we have irrational entries in our gates, such as a 1/\/2 for
the Hadamard, one approach is to approximate each entry up to p(n) bits for p a sufficiently
large polynomial. In other words, we can approximate each entry up to an additive error of
27P(") . One can then show that for sufficiently large but fized p, the overall additive error over
the entire summation can be made exponentially small in n, allowing us to distinguish YES
from NO cases, as desired. O

Better upper bounds. While the technique of Theorem is elegant, PSPACE is not the
best known upper bound on BQP. One can place BQP in the presumably smaller, but still
powerful, class PP, which is the unbounded-error analogue of BPP.

Theorem 3.30. BQP C PP.
Since we will discuss PP in the future, let us formally define it for completeness.

Definition 3.31 (Probabilistic Polynomial Time (PP)). A language L C {0,1}" is in PP if
there exists a (deterministic) TM M and fized polynomials sp,rr : N+ R such that for any
input x € {0,1}", M takes in string y € {0, I}SL(n), halts in at most O(rp(n)) steps, and:

e (Completeness/YES case) If x € L, then for strictly larger than 1/2 of the choices of
y €40, l}pL(”), M accepts.

e (Soundness/NO case) If x & L, then for at most 1/2 of the choices of y € {0, 1}pL(”), M
rejects.

We say M accepts (rejects) x in the YES case (NO case).

There are various ways to prove Theorem [3.30l The approach we will take in an upcoming
lecture is to actually prove that Quantum-Merlin Arthur (QMA), a quantum analogue of NP
which trivially contains BQP, is itself contained in PP; this will be shown via strong error-
reduction for QMA. Two other approaches use completely different techniques: The first is
to show that PostBQP, which trivially contains BQP and is roughly BQP with the magical
ability to “postselect” on certain outputs, equals PP. The second is to use a technique known
as hierarchical voting to show that PQMA[log}, which is the class of decision problems decidable
by a P machine making logarithmically many queries to a QMA oracle (which hence trivially
contains QMA, and thus also BQP), is also contained in PP.

Finally, let us close by remarking that, in addition to pOMADog] - another upper bound on
QMA stronger than PP is known: BQP € QMA C AgPP C PP. And while AgPP is a rather
strange class, it does have the nice property that if AogPP = PP, then PH C PP, which is
considered unlikely. Thus, as far as theoretical computer science is concerned, QMA (and hence
BQP) are strictly contained in PP.

34

4 Linear systems of equations and a
BQP-complete problem

“The method of Gaussian elimination appears in the Chinese mathematical text
Chapter Eight: Rectangular Arrays of The Nine Chapters on the Mathematical Art
... parts of it were written as early as approzimately 150 BCE ... Carl Friedrich
Gauss in 1810 devised a notation for symmetric elimination that was adopted in
the 19th century by professional hand computers to solve the normal equations of
least-squares problems. The algorithm that is taught in high school was named for
Gauss only in the 1950s as a result of confusion over the history of the subject.”

— Wikipedia, https://en.wikipedia.org/wiki/Gaussian_elimination#History

Introduction. A classic problem with applications across just about any technical field is that
of solving linear systems of equations. The task here is, given a set of N equations of the form
anx1 + -+ a;yen = by, for inputs {a;;,b;} € C and variables z; € C, find a simultaneous
solution x € CV to all equations. More compactly, one is given as input A € £L(CV) and target
vector b € CV, and asked to find x € CV satisfying Ax = b.

In this lecture, we study a quantum algorithm for “solving” certain linear systems exponen-
tially faster than known classically. We put the word “solving” in quotes, as the algorithm does
not solve the system in the typical fashion of outputting x € C¥; in fact, since the algorithm
runs in time only logarithmic in N, we cannot even hope to output all of x € CV! Along the
way, we shall see that the study of this algorithm reveals a natural problem complete for BQP
— that of matrixz inversion.

4.1 The basic idea: Quantum eigenvalue surgery

The basic principle behind the linear systems algorithm is elegantly simple, and allows for
broader applications than just solving linear systems.

Ingredients. The ingredients we will need are as follows:
e The quantum phase estimation algorithm,
e a quantum Hamiltonian simulation algorithm, and

e postselection.

Problem specification. Suppose we have a Hermitian operator A € Herm (() CV) in mind,
and a function f : R+ R. For example, f might be f(x) = 22 or, in the case of linear systems
solvers, f(x) = x~!. We also have a vector b € CV. Our goal is to compute f(A4) b € CV,
where f is acting as an operator function. Classically, this computation would require at least
Q(N) time, since just writing out the solution vector takes Q(N) time.

35

https://en.wikipedia.org/wiki/Gaussian_elimination#History

Now let us change the rules and make some assumptions. Suppose I have an efficient algorithm
for preparing b as a quantum state, i.e. |b) = Zf\il b;|i) € CN. Note that since |b) lives in an
N-dimensional space, we require only [log N| 4+ 1 qubits to represent it. This also means the
output vector I compute will presumably live in the same space, i.e. we shall compute

) = F(A)[b) € C,

which is also an O(log N)-qubit state. Since I already assumed the ability to prepare |b) effi-
ciently, it thus remains to simulate f(A) via a quantum circuit. Before moving forward, however,
some important observations:

1. The operator f(A) might not be unitary. Thus, we can only hope to simulate its im-
plementation probabilistically, and this is where the technique of postselection plays a
role.

2. The output |z) may not be normalized as written above. However, any quantum state is
implicitly normalized.

3. The operator A € Herm (CN) is exponentially large in the number of qubits. We will
therefore need to assume some appropriate form of “succinct access” to it, rather than
writing it all down.

4. Finally, the output |z) is a quantum state, meaning we cannot just read all its entries.
Rather, once we prepare |z), we can next perform any efficient measurement we like on
|z). Thus, we may learn global properties of the state |z) quickly, but not all of its entries.

Algorithm sketch. Suppose A has spectral decomposition A = Zj Ajlwi) (5. We first sketch
the algorithm in the simple case where |b) = |1;), such that the goal is to compute

z) = F(A)lY5) = FN)). (4.1)

As this expression reminds us, operator function f is just a function of the eigenvalues of A.
Thus, to simulate f(A), we shall manually “extract” these eigenvalues, “process” them to sim-
ulate application of f, and then “reinsert” them where we found them.

Step 1: FEigenvalue extraction. Since A is Hermitian and not necessarily unitary, we cannot
implement it directly. However, recall that U = e*! is unitary, and has eigenvalues e*%i. In
principle, we may hence compute U|t);) = €™ ¢);). But to “process” \;, we need to extract it
out of the phase and into a register, i.e. to instead compute |A;)|1), so that we can next try to
map this to | £())[1).

Any time one wishes to “bring a quantity to or from a phase”, a helpful tool tends to be
the Quantum Fourier Transform (QFT). Indeed, using the QFT in a clever way, and given the
ability to apply high powers U in a controlled fashion, the Quantum Phase Estimation (QPE)
algorithm yields the mapping

[05) = A5

(Above, it is implicitly assumed ancillae initialized to |0) are added over the course of the
mapping to store \;.) Brief reviews of the QFT and QPE are given in Section

36

Exercise 4.1. Is there an a priori bound on how many bits A; requires to represent? What
would be an ideal way to cram, say, an irrational \; into a finite-size register using bit strings?

Step 2: Eigenvalue processing. With the eigenvalue A; sitting in a register, we now simply
coherently compute f via a classical algorithm to map

(A3} = L F () AG) [bj)- (4.2)

Step 3: Figenvalue reinsertion. This step is actually a sequence of steps, since we need to
uncompute any auxilliary data we produced along the way.

As a first step, recall that our aim in Equation was to compute f(\;)|1;) (as opposed
to | f(Xi))|¥;)). Having accomplished the latter, we simulate the former as follows: Conditioned
on the register containing |f(\;)) we may produce state

A1) = 13 es) (1 70200 + fw)m) ,

where the last register is a single qubit. This is just a single-qubit rotation on the third register,
conditioned on the contents of the first register.

Exercise 4.2. What is the difference between f(A\;)[1;) and |f(\;))|v;)7?

Exercise 4.3. What range of f();) is permitted in the equation above?

If we now measure the last register in the standard basis and obtain 1, we collapse our state
onto essentially what we wanted:

FODA) [1)-

All that is left is to “uncompute the garbage”. Namely, we apply a Pauli X to |1) to return
it to state |0), and we invert the phase estimation algorithm on [¢);) to map |A;)|v;) back to
|0---0)|1;). We may now safely discard the registers which have been reinitialized back to all
zeroes, obtaining Equation (4.1)).

Applying the algorithm to general states |b) € CN. In Equation (4.1)), we assumed |b) was an
eigenstate of H for simplicity. To now extend this to arbitrary |b), we give Nature a “high 5”

and thank it for being linear, because our analysis actually extends trivially due to the facts
that (1) quantum mechanics is linear and (2) we may write

N
b)) = Bily),
j=1

since recall {|¢;)} € C¥ is an orthonormal basis for CV. Thus, by linearity the algorithm will
correctly map

N N
> Bjlib) = > B F)W),
p i=1

where we stress the right-hand side is not normalized as written.

37

Exercise 4.4. Why did we need to uncompute the garbage at the send of Step 3 earlier? How
might omitting this uncomputation cause a problem when we move to the setting of general
0)?

4.1.1 Aside: Brief review of the QFT and QPE

Since the procedure we’ve sketched crucially uses the QFT and QPE, let us briefly review how
these components work. (We will only use them as black boxes in this lecture, but they are
used sufficiently frequently to warrant a refresher.)

The Quantum Fourier Transform (QFT). Recall the Fourier transform is a unitary operation,
meaning it is just a change of basis. A powerful change of basis it is, however, as it can be viewed
as mapping the “time domain” to the “frequency domain”. For this reason, it is ubiquitous
in areas such as signal processing (meaning you can thank the Fourier transform for making
mp3 sound files possible), and even allows one to multiply pairs of n-bit integers in essentially
O(nlogn) time (as opposed to O(n?) time via the grade school multiplication algorithm). The
Quantum Fourier Transform (QFT) similarly finds key uses in quantum algorithms, particularly
when one wishes to move a quantity from a register up into a phase, or vice versa.
We may completely specify the N-dimensional QF Ty via its action on the standard basis:

=

L QFTy 1
—> PR
17) ~

As previously noted, observe that it lifts string j into the phase.

eQm'jk/N’k>.

e
Il

0

Exercise 4.5. Prove that H = QFT5. In other words, you have already been using the QFT.

A full recap of the QFT circuit would be distracting for the purposes of this lecture; we refer
the reader to Chapter 5 of Nielsen and Chuang for a full exposition. We shall simply note
that the basic implementation of the QFT requires quadratically many gates in the number of
qubits; for us, this means a runtime of O(log? N), where recall N is our dimension.

Quantum Phase Estimation (QPE). With the QFT in hand, we may perform QPE. Specif-
ically, we assume we have a black-box implementation of some unitary U € U(CY), and an
eigenvector 1) of U with eigenvalue e?™i for some ¢; € [0,1) (without loss of generality).
Our goal is to compute the n most significant bits of ¢;. Actually, we require a stronger assump-
tion than just the ability to run U — we must be able to perform a controlled-U* operation,
which applies U k times to a target register, conditioned on a control register being set to |1).
This is not a trivial assumption.

Exercise 4.6. Suppose U € U((C?)®") has a polynomial-size quantum circuit implementation
of 1- and 2-qubit gates. Is it true that for all such U, controlled-U* can be implemented effi-
ciently for £k € ©(2")? (Hint: Try to embed a brute force search algorithm over all assignments
to a given 3-SAT formula ¢ : {0,1} + {0, 1} into U for k = 2".)

The algorithm for QPE is now sufficiently simple that we include it for completeness:

1. Start with initial state [no) = |0%)|1);), for ¢t = n + [log(2 + 2)]. Here, € will dictate the
success probability of the procedure.

38

2. Applying H®" to the first register, we obtain state |;) = (ﬁ Zztz_ol]k>> 1)

3. Apply the controlled-U operation, with register 1 as control and register 2 as the target,

to obtain
2t—1

1 ik .
n2) = \@kzoez "lk) | [15)-

Exercise 4.7. To what power do we need to raise U in this step in the worst case?

4. This expression now has our desired phase ¢; encoded in the phase; in fact, if ¢; can be
encoded exactly using n bits, then the first register is just the QFTy: of [2!¢;) (and in
this case we could have set t = n). Therefore, applying QFT; yields |n3) = |2¢;)|v¥;),
from which we can compute ¢;.

Recall that in general, we have no guarantee that ¢; can be expressed in n bits. This is intuitively
why we require ¢ > n ancilla bits; an appropriate analysis shows that choosing ¢t = n + p yields
failure probability at most [2(2F — 1)]71.

Exercise 4.8. Suppose the input state to the QPE algorithm is not an eigenvector |1);) of U,
but rather an arbitrary state |¢)) € CV. Sketch the action of each step of the QPE algorithm

on [¢).

4.2 A quantum algorithm for linear systems of equations

We now show how to instantiate the algorithm sketch of Section[4.1]in the setting of solving linear
systems Ax = b. Let us assume for simplicity that A is Hermitian and full rank (the algorithm
can be modified to work even without these assumptions). Then, recall from elementary Linear
Algebra that the system has the unique solution x = A~'b. But now note A~! is an operator
function f(x) = ! applied to Hermitian operator A. Thus, we can try to apply the “eigenvalue
surgery” technique of Section to “manually invert” the eigenvalues of A. Before proceeding,
we must discuss a key quantity known as the condition number of A, which is relevant to both
classical and quantum linear systems solvers.

4.2.1 Condition numbers of matrices

Whereas in theory, any full rank matrix A can be inverted, in practice this cannot necessarily
be done reliably. For some choices of A, the computation of A~! is very sensitive to numerical
error, and this is captured by the notion of condition number.

Formally, suppose we are only able to represent b via a numerical approximation, i.e. we
numerically compute b’ = b + € for some error vector e. We are interested in understanding
how A~'b’ compares with A~'b. By linearity, this depends on how A~'b compares with A~le
— if the former is not much larger than the latter, the error will be quite noticeable. So let us
look at the ratio between these two, normalized by the ratio of b and e themselves, and where
we employ the Euclidean norm:

[A7ell, bl _ 147l il
[A=l, el el TA7B],

39

To maximize this ratio over all b and €, we maximize the left quantity (giving us H A1 HOO by
definition of the spectral norm) and minimize the right quantity (giving us || A ||,). This worst
case ratio is precisely how we define the condition number,

K(A) = [A7H| | All -

Thus, k(A) roughly captures the worst-case sensitivity of A, over all choices of b, to encoding
errors in b.

Exercise 4.9. 1In a previous lecture, we defined the spectral norm slightly differently — instead
of dividing by | e[|, as in || A7 €|, /|| €|l above, we required € to be a unit vector. Prove that
both definitions of the spectral norm are equivalent.

Exercise 4.10. Prove that the minimum of H A~b H2 over all vectors b is indeed || A || . Hint:
One easy way to see this is to note that || A ||, is the largest singular value of A.

Exercise 4.11. What is x(A) for any unitary A?

Exercise 4.12. What is xk(A) for rank deficient A? How does this support the idea that A is
by definition non-invertible?

4.2.2 Assumptions for the algorithm

The following assumptions are required for the algorithm (in addition to the non-crucial as-
sumptions that A is Hermitian and full rank):

1. That || A]l, = 1, and hence || A~!||_ = k(A). Under this assumption, once the posts-
election step passes, the algorithm is guaranteed to be correct. This assumption can be
relaxed, in exchange for allowing further errors (i.e. we would need to also consider the
“ill-conditioned” subspace of A).

2. An efficient unitary implementation of |b) € CV. This is treated as a genuine black box.

3. An efficient Hamiltonian simulation algorithm to implement unitary e*4*. Recall here
A € Herm (() CV), whereas efficient means with respect to the number of qubits, O(log V).
This is a highly non-trivial assumption.

Exercise 4.13. Prove that the following is false: For any Hermitian A and evolution
time ¢ € R, there is a quantum circuit with size polylog(N) simulating ¢4, (Hint: Recall
the equivalence with arbitrary unitary operators U € U(C"), and apply a basic counting
argument to show the latter cannot have poly-size circuits for all U.)

Luckily, there are some fairly broad classes of Hamiltonians which we can simulate effi-
ciently — these include s-sparse Hamiltonians A, which have two important properties:
(1) At most s non-zero entries per row, and (2) there exists a poly-time classical algorithm
which, given a row index r € [N], outputs the non-zero entries in row r. In this case,
there exist quantum algorithms for simulating et with error at most ey (with respect
to trace distance) in time O(log(N)s?t), where the tilde means slower growing terms are
omitted for simplicity. Note this runtime has been simplified using the assumption here
that || Al < 1.

40

4.2.3 The algorithm

For simplicity in the analysis, we shall make the following additional assumptions: (1) The state
|b) can be prepared without error. (2) A > 0, which means that since we assumed || A|_ =1
and || A~ HOO = k(A) in Section we have that Apax(A) = 1 and Apin(A) = 1/k(A). (3)
All eigenvalues 1/k(A) < Aj < 1 of A require at most n bits to represent, for some integer
n > 0. (This n will shortly play a role in terms of run-time.) (4) Simulating ¢’4* can be done
without error for any time ¢ > 0 (with some associated cost, of course).

Exercise 4.14. Prove that if A = 0, then || A = Amax(A) and || A~ HOO = Amin(4).

The algorithm now follows the sketch of Section

1. Use the assumed black box to prepare state

N
b) = Bily) eCV,
j=1

where |1);) are the eigenvectors of A with eigenvalues A;.

2. Apply QPE (for unitary e’4) with an n-qubit ancilla to our state |b) to obtain

N
> Bil2n A) € (CHEm e .

j=1

3. Conditioned on the first register, rotate a new single-qubit ancilla as follows:

Zmn \wg(A%Q(A)\o>+<Aj;w)|1>>e<<(:2>®“®<CN®<c2. (43)

Note that the third register is now entangled with the first two.

Exercise 4.15. Which of our assumptions guarantee that 1/x(A) < 1/(\jr(A4)) <1, and
hence that the amplitudes above are well-defined?

4. Apply the inverse of the QPE algorithm to the first two registers to obtain

iﬁ-\ow» 1-— #ym + <1> 1)] € (€ @ CN @ C?
= ! AFK2(A) Ajk(A) ‘

We may hence now discard the first register safely, having uncomputed it.

Exercise 4.16. Why does applying the QPE~! operation produce the state above, given
that the third register in Equation (4.3)) is entangled with the first two? (Hint: With
respect to which basis did we define the action of QPE?)

5. Measure the third register in the standard basis, postselect on outcome 1, and then discard
the third register to obtain a state

Zﬁ;(,)w ﬁ:ﬁj(;j>|wj>o<A—1|b>e<cN.

7j=1

41

bY—

Exercise 4.17. The use of “equivalence” = above is not an accident — why are the first
two expressions equivalent for the purposes of quantum information?

Exercise 4.18. Prove that in Step 5, the probability of obtaining outcome 1 is at least
1/k%(A).

We conclude, by the exercise above, that the expected number of repetitions to obtain |1)
in Step 5 is O(x%(A)). Using the technique of quantum amplitude amplification, this can
be reduced to O(k(A)) repetitions; we omit the details of this step here, but assume it
has been implemented in our runtime analysis below.

Runtime. Let T}, denote the number gates required to prepare |b). The total runtime we have
hence accrued is O(k(A)(Ty + ts2log(N))), where ¢ is the time we run Hamiltonian simulation
for in the QPE algorithm. Since we assumed all eigenvalues of A require at most n bits to
represent exactly, this means QPE will simulate ¢ for t € O(2") (in the notation of QPE
from Section there we would set t = n). Thus, the total runtime scales as

O(r(A)(Ty + 2"s° log(N))),

assuming we wish to compute the ezact answer proportional to A~!|b), and assuming all sub-
routines we have called run without error. Recalling that the number of qubits is O(log(NN)) for
Aan N x N matrix, this means that if n € O(loglog N) (i.e. QPE approximates phases up to
additive inverse polynomial error in the number of qubits), we would get runtime O(k(A)(T} +
s2log?(N))). In the regime x(A), Ty, s € polylog(NN), this is exponentially faster than classical
algorithms explicitly solving the entire N x N system.

Of course, we cannot assume n € O(loglog N) a priori (since we know just about nothing
about the spectrum of A), but a more involved algorithm and analysis can be used to show that
if one wishes to output state |z) satisfying || |z) — |Z) ||, < €, it suffices to set t € O(k(A)/e),
obtaining a final runtime of

O(k(A)(Ty, + k(A)?s?log(N)) /e).

This more advanced algorithm can also handle e.g. non-Hermitian A, dropping the assumption
that k(A4) = H A1 HOO, and relaxing the simplifications that all subroutines run perfectly (e.g.
they may fail with some probability).

On optimality. In order to maintain an efficient runtime in the number of qubits, O(log N),
the error € permitted above must be at most inverse polynomial in the number of qubits. This
is generally sufficient for the purposes of BQP to distinguish between YES and NO cases of
promise problems. Nevertheless, it is natural to ask: Can the runtime of this algorithm be
improved to something polylogarithmic in k(A) and €?

It turns out that if the goal is to classically estimate the quantity (z|II|z) for some efficiently
implementable projector II, then this is highly unlikely. (For example, it would imply BQP =
PSPACE if a runtime in x(A)'~ for § > 0 a constant would be possible. More on such ideas in
Section) However, if we relax the requirements so that the goal is to produce the quantum
state |z) (i.e. this is now a different beast altogether, as the output is no longer classical), then
an improvement is possible. Namely, recent advances in Hamiltonian simulation techniques
have led to an improved linear systems solver which has runtime polynomial in log(1/e), as
opposed to 1/e here. In other words, exponentially good approximations to |z) can be prepared
efficiently quantumly (assuming A is well-conditioned, etc).

42

Exercise 4.19. Can you see where the polynomial dependence on 1/¢ in the runtime must
come in, i.e. which step of the algorithm we described here cannot be run to full precision in
general, even assuming all subroutines work perfectly?

Exercise 4.20. Why does the ability to prepare |z) efficiently to within 27" Euclidean distance
not allow one to estimate the classical value (z|II|x) to within 27" additive error efficiently (i.e.
why does the improved algorithm not contradict the known lower bounds)? (Hint: Imagine we
could even prepare |x) perfectly.)

4.3 A BQP-complete problem: Matrix inversion

At the end of the Section we touched on the topic of optimality. It turns out that task
of matrix inversion, which is the core subroutine of the linear systems algorithm, characterizes
the complexity of BQP, in that it is a BQP-complete problem. Let us formalize it as follows.

Definition 4.21 (Matrix inversion problem (MI)). The promise problem M1 = (Ayes, Ano, Ainv)
s as follows.

e Input: An O(1)-sparse invertible Hermitian matriz A € Herm (() CV) satisfying k=1 (A) =<
A <X T for k(A) € polylog(N), specified via a polynomial-time Turing machine M which,
given any row index r € [N] of A, outputs the O(1) non-zero entries of A.

e Output: Let |T) oc A7L|ON) be a unit vector, and Tl = [1)(1| € L(C?) a projector onto the
first qubit of |T).
— (Completeness) If Tr(I1|z){(x|) > 2/3, output YES.
— (Soundness) If Tr(I1|z)(z|) < 1/3, output NO.
— (Invalid) Else, output YES or NO arbitrarily.

Theorem 4.22. MI is BQP-complete under polynomial-time many-one reductions.

Proof. Containment of MI in BQP follows immediately from the linear systems algorithm. We
show BQP-hardness. Let V = V,,---V; be a BQP circuit acting on n qubits, and of size
m € poly(n), for n € log(N). Without loss of generality, we may assume m is a power of 2. We
give a polynomial-time many-one reduction to a matrix A as in the definition of MI.

Let us begin with an idea that almost works. Define

—_

2m—1
U= [t+1{t|@Vigr+ Y [t+1mod2m)(t| @ Vi, _, € U((CHEPE™ @ (C?)*),
t

3

Il
o

t=m

where recall we implicitly assume V; (which is a 2-qubit gate) is tensored with an identity on
all n — 2 qubits it does not act on.

Exercise 4.23. Show that U is indeed unitary.

Exercise 4.24. Show that U™[0°¢™)|0") = |m)V|0™). Thus, measuring the first qubit of the
second register simulates measuring the output qubit of the BQP computation V.

43

Exercise 4.25. For what values of k is U¥|0)|0") = |0)|0™) necessarily?

We would like to embed U in a matrix A, so that A~ can be nicely expressed via U. The
natural idea is to recall the Maclaurin series expansion

1 (o)
_ l
1—1 Z z
1=0
which holds for |z| < 1. Applying this to U, we find

(I-U)"1t= i Ut
=0

Exercise 4.26. Technically, the last equation above is not correct (nevertheless, it provides the
correct intuition; we will correct the error later). What requirement for the Maclaurin series
expansion have we violated?

Defining A = I — U and |T) oc A~1|01°8™+7) 4 unit vector, we have

o
@) oc Y U'[0)!8™0™) o [0)]07) + [1)VA]07) + -+ [m) Vi - -~ V2[0").
=0

Exercise 4.27. Again, technically, the last statement above is not exactly correct — not all
terms on the right hand side will be equally weighted. Which two terms should be weighted
slightly less than the others? (For pedagogical reasons, we nevertheless work with the statement
above, as the discrepancy will not affect our high-level discussion other than to complicate the
amplitudes involved.)

Since each term [j)V; ---V1]|0™) is a unit vector, this means

7) = \/mliﬂ (10)[07) + [T)VAIO™) 4 - -« + [m) Vi - - VA]0) .

Thus, if we measure the first register of |Z) in the standard basis, with probability 1/(m + 1)
we collapse onto state |m)V|0"). Let E,, (respectively, Ey) be the event we postselect in the
first register on |m) (respectively, |1),...,|m — 1)). Then, conditioned on E,,, the probability
of measuring 1 in the first qubit of register reveals the answer of the BQP computation with
probabilty at least 2/3; otherwise, conditioned on Ej, we may assumeﬂ without loss generality
that V rejects with probability 1. This implies (where recall IT = |1)(1] is a single qubit projector
onto the output qubit of the second register):

e If VV denotes a YES instance, then (z|II|z) > ﬁ

e If V denotes a NO instance, then (Z|II|z) < m

1One way to achieve this is to modify V so that in all but the last time step, V sets the output qubit to |0),
and only in time step m does V perform a CNOT to copy over its answer to the output qubit.

44

Exercise 4.28. Prove the probability bounds claimed above.

This is almost what we want, except for three things: (1) A must be O(1)-sparse. (2)
We should have probability bounds 2/3 (completeness) and 1/3 (soundness) for MI. (3) A
should be an invertible Hermitian matrix A € Herm (() CV) satisfying k~1(A) < A < I for

k(A) = polylog(N).
Exercise 4.29. Prove that U is O(1)-sparse. Conclude that A is also O(1)-sparse.

Exercise 4.30. How can one boost the probability bounds from 2/(3(m+1)) and 1/(3(m+1))
to 2/3 and 1/3? (Hint: Two tricks can be used together. First, use error reduction for BQP.
Second, what happens if before constructing U, we modify the circuit V' by appending M time
steps in which nothing is done?)

Exercise 4.31. Is A necessarily invertible?

Obtaining the third desired property is slightly trickier. We begin by bringing the condition
number of A down to polylogarithmic in N, which we now discuss.

Exercise 4.32. What is the worst case condition number (I — U) for a unitary U?

Exercise 4.33. Show that defining A = I — U has x(A) € O(1). Where in the previous
analysis does this choice of A cause problems, however?

To circumvent the problems in the previous exercise, we choose A = I — e~ /™ for scalar
—1/m
e .

Exercise 4.34. Prove that x(A) € O(m) for the new definition of A. (Hint: You only need to
use the fact that U is unitary, not the specific definition of U. Also, use the fact that for normal
operators A, the singular values of A are {|A(A)|} (why?).)

Exercise 4.35. Show that A is now invertible.

Exercise 4.36. Rerun the analysis with our new choice of A and show that we are still able to
distinguish between YES and NO cases for V' with constant completeness-soundness gap.

With a bounded condition number in place, to make A Hermitian we apply the same trick
for dealing with non-Hermitian matrices U as in the linear systems algorithm (which we shall
again omit; roughly, one creates the anti-block diagonal matrix

0 I— e V/my
I — e /myt 0 ’

which is clearly Hermitian, and whose inversion can be shown to also yield a similar final result
to inverting I — U.) Finally, note that the requirement x~! < A < I does not make sense until
we map A to a Hermitian matrix, since the “<” partial order is defined on the set of Hermitian
matrices (just as the usual “<” total order is defined on the set of real numbers, but not on

45

complex numbers). Once A is Hermitian, however, a global rescaling of A will suffice to satisfy
this final constraint, which we also omit. O

46

5 Quantum Merlin Arthur (QMA) and strong
error reduction

“I have had my results for a long time, but I do not yet know how to arrive at them.”
— Carl F. Gauss.

“If only I had the theorems! Then I should find the proofs easily enough.”
— Georg B. Riemann.

Introduction. We have thus far defined BQP, studied the task of “solving” linear systems, and
shown that matrix inversion is BQP-complete. We now wish to define a quantum analogue of
NP. This is unfortunately a somewhat delicate issue; indeed, there are almost as many known
quantum generalizations of NP as the story of Snow White has dwarves — there’s QMA, QMA,
QMA(2), QCMA, StogMA, and NQP. With this said, there is a de facto definition of “quantum
NP” used by the community: Quantum Merlin Arthur (QMA).

In this lecture, we begin by defining Merlin Arthur (MA) and Quantum Merlin Arthur (QMA).
We then study the surprising strong error reduction property of QMA. Finally, we close by
discussing the relationship of QMA to known complexity classes. As suggested by the opening
quotes of this lecture, a key theme will be the power of proofs (particularly quantum proofs);
as with NP, these proofs will in general be hard to produce, but easy to verify.

5.1 Quantum Merlin Arthur (QMA)

Just as PromiseBPP was the correct class to generalize to BQP, to define QMA we begin with
the promise-problem probabilistic generalization of NP, PromiseMA.

Definition 5.1 (PromiseMA). A promise problem A = (Ayes, Ano, Ainy) is in PromiseMA if
there exists a (deterministic) TM M and fized polynomials p,s,r : N — Rt such that for any
input © € {0,1}", M takes in “proof” y € {0, 1}p(") and string z € {0, 1}5(”), halts in at most
O(r(n)) steps, and:

o (Completeness/YES case) If x € Aycs, there exists a proof y € {0, 1}p(n), such that for at
least 2/3 of the choices of z € {0, 1}8(”), M accepts.

e (Soundness/NO case) If v € Ay, then for all proofs y € {0, 1}p("), at most 1/3 of the
choices of z € {0,1}*™ cause M to accept.

e (Invalid case) If x € Ainy, then M may accept or reject arbitrarily.

Exercise 5.2. How might we define Merlin-Arthur (MA), instead of PromiseMA (i.e. how does
the definition above change if we drop the promise)?

47

Exercise 5.3. Show that the completeness and soundness parameters of 2/3 and 1/3, respec-
tively, can be amplified without loss of generality to 1 — 27" and 27", respectively. How many
copies of the proof y suffice for this amplification?

The quantum analogue of PromiseMA which we focus on in this lecture is Quantum Merlin
Arthur (QMA) (which, again, is really PromiseQMA, just as BQP is really PromiseBQP).

Definition 5.4 (Quantum Merlin Arthur (QMA)). A promise problem A = (Ayes, Anos Ainv) 15
in QMA if there exists a P-uniform quantum circuit family {Qn} and polynomials p,q : N +— N
satisfying the following properties. For any input x € {0,1}", Q. takes in n+p(n)+q(n) qubits
as input, consisting of the input x on register A, p(n) qubits initialized to a “quantum proof”
|) € Bp(n) on register B, and q(n) ancilla qubits initialized to |0) on register C. The first
qubit of register C', denoted C1, is the designated output qubit, a measurement of which in the
standard basis after applying Qy, yields the following:

e (Completeness/YES case) If x € Ayes, there exists proof [1) € Bp(n), such that Q,, accepts
with probability at least 2/3.

e (Soundness/NO case) If x € Ay, then for all proofs 1) € Bp(n), Q. accepts with proba-
bility at most 1/3.

e (Invalid case) If x € Ainy, Qn may accept or reject arbitrarily.

Exercise 5.5. If we replace the quantum proof |¢)) with a classical proof y € {0,1}" ™) in the
definition of QMA, do we recover PromiseMA?

A few comments on QMA are in order:

1. Weak error reduction. Similar to PromiseMA, parallel repetition suffices to amplify the
QMA completeness and soundness parameters to 1 — 27" and 27", respectively. However,
the proof of this fact is not entirely trivial.

Exercise 5.6. Suppose the QMA prover sends k copies of its proof, |1), instead of a single
copy. On the jth copy of the proof, the verifier runs the verification circuit @),,. Finally, the
verifier measures the output qubits of all runs of), takes a majority vote of the resulting
bits, and accepts if and only if the majority function yields 1. Prove that this procedure
indeed amplifies the completeness and soundness parameters for QMA. (Hint: In the NO
case, a cheating prover is not obligated to send k copies of some state [¢) in tensor prod-
uct, but rather can cheat by sending a large entangled state |¢) € Bk - p(n) across all k
proof registers. Why does entanglement across proofs not help the prover in the NO case?)

Observe we have denoted the use of parallel repetition above as weak error reduction.
This is because the amplification step blows up the size of the proof register. Naively,
one may expect this blowup to be necessary, since a priori it seems we cannot “reuse”
the quantum proof |¢)) — indeed, the QMA verifier's measurement of its output qubit
disturbs its quantum state, and the no-cloning theorem says the verifier cannot sidestep
this by simply copying its input proof |¢)) before verifying it. Nevertheless, it turns
out that amplification without a blowup in proof size is possible — this is called strong
error reduction (Section , a simple and elegant application of which is to show that
QMA C PP (Section [5.3).

48

2. Pure versus mixed proofs. We have assumed the proof |1) in QMA to be a pure state,
as opposed to a mixed state. Let us now reformulate the optimal acceptance probability
of the quantum verifier (), as an eigenvalue problem; along the way, we will not only see
that the “pure state proof” assumption is without loss of generality, but the reformulation
we derive will prove crucial in our analysis of Section [5.2

Let @), be the circuit from Definition acting on n + p(n) + ¢(n) qubits. Recall that
A, B, C denote the input, proof, and ancilla registers, respectively, and C the designated
output qubit of @,. Then, the probability that @, accepts proof |¢) is
2

Prlaccept] = || [1){1lg,Qnlz)a ® [¢)p ®10---0)c ||,

= (2[a® @& {0 0]cQL1)(1]c,Qnlz)a @ [¥)p @0 0)¢c

= T |((ala ® I @ (0--0lcQhIN{Lle, Qule)a ® 15 ©10-- - 0)c) [¢) (W]

= TR, (5.1)

where the third statement follows by cyclicity of the trace, the fourth by defining for
convenience

Pyi=(2|a®@Ip®(0---0cQh1) (1], Qulr)a © I3 20 0)c.

Henceforth, we shall abuse terminology by refering to P, as the PO V]\ﬂ for verifier Q.
Exercise 5.7. What space does P, act on?

Exercise 5.8. Prove P, = 0. (Hint: Prove first that if A > 0, then BABT = 0 for any
(possibly non-square) matrix B; the proof will be easier if you choose the “right” definition
of positive semi-definiteness to work with.

Now we are ready to address the question: What happens if we consider a mized proof p
in place of a pure state 1) (|?

Exercise 5.9. Prove that for any density operator p = . p;|1;) (1], there exists an 4
such that Tr(Pyp) < Tr(Py|v:)(1i|). Conclude that, without loss of generality, quantum
proofs in Definition can be pure states.

Formally, POVM stands for Positive-Operator Valued Measure, and it denotes an alternate approach for
modelling measurements. Specifically, a POVM P acting on n qubits is a set of operators P = {P1,..., Py}
for some k£ > 0, such that P; > 0 and >, P; = I. As with projective measurements, each ¢ denotes a distinct
outcome of the measurement encoded by P, and the probability of outcome i is Tr(P;p) when measuring
state p. Unlike projective measurements, we do not require that P;P; = 0 for ¢ # j; in this sense, POVMs
generalize projective measurements. (Note that also unlike projective measurements, the postmeasurement
state upon obtaining outcome i is no longer specified by P;pP;/Tr(pP;).) In the context of a QMA verifier @y,
we may view the application of @),, and subsequent measurement of the output qubit of @, in the standard
basis as a POVM consisting of two elements: P = {I — P,, P,} (since the measurement has only two outputs,
|0) or |1), respectively). Since this two-outcome POVM P is fully specified by P, for simplicity we choose to
abuse terminology and refer to P by P,.

49

Finally, we stated earlier that the optimal acceptance probability can be reformulated as
an eigenvalue problem. Indeed, the optimal acceptance probability over all proofs [¢) is
now

max <¢|P;p|¢)> =)\maX(Px)a

unit vectors |¢)€Bp(n)

attained by any eigenvector |¢) of P, with eigenvalue Apax(Py).

Exercise 5.10. Prove the equality above using the Courant-Fischer variational char-
acterization of eigenvalues. The latter states: Let A € Herm (() CV) have eigenvalues
A < - < Ay. Then,

Ak = min max (Y| Al).

subspaces S C CN of dimension k unit vectors |¢) € S

5.2 Strong error reduction for QMA

In the setting of PromiseMA, a previous exercise essentially asked you to show that at given a
single copy of proof y, the completeness and soundness parameters of the PromiseMA verifier
could be amplified to exponentially close to 1 and 0, respectively. Quantumly, one might naively
expect an analogous statement to be false — a quantum verifier measures and hence disturbs its
state, so how can it “reuse” its proof, [1))? A simple solution would be for the quantum verifier
to create multiple copies of |¢) before beginning its verification; unfortunately, the quantum
no-cloning theorem rules this out. The following theorem hence comes as a surprise.

Theorem 5.11 (Strong error reduction for QMA). Let Q, be a QMA verifier for promise
problem A = (Ayes, Ano, Ainv), where we assume the terminology of Definition . Then, for
any polynomial r : N — N, there exists a polynomial-time deterministic TM mapping @y to a
(polynomial-size) quantum circuit R, with the following properties for any input x € {0,1}":

e (Completeness/YES case) If x € Ayes, there exists proof |1) € Bp(n), such that R,, accepts
with probability at least 1 — 277,

e (Soundness/NO case) If © € Ay, then for all proofs |1) € Bp(n), R, accepts with proba-
bility at most 27"

e (Invalid case) If x € Ainy, Ry may accept or reject arbitrarily.

It is crucial to note that both @Q,, and R, take in the same number of proof qubits, p(n).

Remark. As with weak error reduction, Theorem holds even if the completeness parameter
c(n) and soundness parameter s(n) for Q, satisfy c(n)—s(n) > 1/t(n) for some fixed polynomial
t:N—N.

5.2.1 Intuition: A spinning top

To most easily see the intuition behind the proof of Theorem assume (), has completeness
1, i.e. in the YES case, there exists a proof |¢) accepted by @, with certainty. Assume first
that € Ayes. There are two high-level steps to the amplification procedure:

50

1. Run the verification. Apply @, to obtain
|#) = Qulx)al¢)B|0---0)c € Bn+p(n) + q(n). (5.2)
Since x € Ayes and @, has perfect completeness, we know
|#) = 1)y |@’) for some unit vector |¢') € Bn + p(n) + q(n) — 1.

Thus, if we measure the output qubit, C1, in the standard basis via projectors I12¢ePt —
|1)(1| and IT"°t = |0)(0] € L£(C?), we not only obtain outcome IT2“°P* with certainty,
but the postmeasurement state is chlcept|¢> = |¢). In other words, the measurement does

not disturb the output of Q,,.

2. Run the verification in reverse. Since measuring |¢) did not disturb it, applying @,, in
reverse now trivially reverts us to our initial state:

Ql, (T52716)) = Q116) = Q) (Qula)al) 510+ - 0)c) = |2)al) 5[0+ O)c.

If we now measure projectorsﬂ ITreset = |z)(x] 4 ® [0---0)(0---0] 4 o, IV = T — II"*¢* €
L(Bn + q(n)), we again leave the state invariant, i.e. with probability 1 we obtain outcome
II**s°* . and the postmeasurement state satisfies

I2) 4[4) 10+ 0) = [a)a[4) 510" - O)c.

Note that we may repeat this procedure as many times as we like, and the outcomes will always
be the same. This is akin to a perfectly spinning top — if we think of the each application of
the amplification procedure as giving the top a supplemental twirl, the top will continue to spin
blissfully along in a “steady state”.

The interesting part is now the NO case. Here, in Step 1 of the amplification procedure
above, since proof |1)) is accepted with probability at most 1/3, we know |¢) has form

|6) = aol0)c, [(¢)1) + eall) ey [4)

for some orthonormal unit vectors |¢'), |(¢')L) € Bn +p(n) + q(n) — 1, |ag|* + |a1|* = 1, and
\041]2 < 1/3. The last of these properties guarantees that if we are lucky enough to measure
[1) in C1, the postmeasurement collapse will disturb |¢) greatly (since most of the weight of
|¢) is on [0)¢,). This, in turn, suggests that when we now run Step 2 by inverting @, and
measuring {Hreset, Hnew}, we will obtain outcome II"*V with non-trivial probability, and again
disturb our state greatly. And applying these two steps repeatedly will presumably amplify the
disturbances further. This is analogous to saying that if we start with a top spinning with a
slight wobble, each twirl we perform will further amplify the wobble until the top spins out of
control.

5.2.2 Proof of strong error reduction

While Section gave intuition as to why the amplification procedure might work, a formal
analysis reveals the “motion of our top” can be tracked in a very elegant and precise fashion,
even if we drop the assumption of perfect completeness.

2For clarity, the superscript for II"**°* means the A and C' registers are reset to their original states |x) and
|0---0), respectively, and for II**" means the registers are set to a “new” start state.

o1

Proof of Theorem[5.11. We begin by following Section [5.2.1] Let @, be a QMA verifier and
x € {0,1}" an input string. For brevity, we henceforth simply write @ for @,. To ease the
analysis, we also rename our projectors

SO =]_—‘[rlew7 Sl = 1—‘[1“ese‘c7 EO — Hreject7 El — l—Iaccept7 (53)

where S in S; stands for “start” (since this measurement is on the start state) and E; stands
for “end” (since this measurement is on the end state).

The new verification procedure. The new circuit R,, (henceforth R for brevity) acts as follows.
1. Set i =t =0.

2. While i < N:

a) (Run the verification) Apply @ and measure output qubit Cy with respect to { Eg, F1 }.
If the outcome is Ej, set y; = j € {0,1}, and increment 1.

b) (Run the verification in reverse) Apply QT and measure input and ancilla registers
A and C with respect to {Sp, S1}. If the outcome is S;, set y; = j € {0,1}, and
increment 1.

3. (Postprocessing) If the number of indices i € {0,..., N — 1} such that y; = y;+1 is at least
N/2, accept. Otherwise, reject.

It suffices to set N = 8r(n)/9. Note the mapping from @ to V takes time polynomial in n.
Exercise 5.12. How many times does the while loop above run with respect to N7

Correctness. If we are in a YES case with perfect completeness, it is clear in Step 3 above that
yi = yit1 for all i € {0,...,N —1}. The aim is thus to show a similar statement for general
YES (resp. NO) cases; that we are more likely to maintain (resp. flip) the value of y; in setting
yi+1 in the YES (resp. NO) case, thus leading to the correct answer with high probability in
Step 3.

The starting point for the formal analysis is Equation , which said the probability that
@ accepts proof |¢) is Tr(P.|v) (1)), for positive-semidefinite operator

Po=(z|a®Ip® (0 0|cQ E1Qx) 4 @ Ip®|0---0)¢.

It turns out that if we restrict our attention to eigenvectors [1) of P,, we obtain a clean closed
form solution.

Closed form solution when |1) is an eigenvector of P,. In the case when |¢) is an eigenvector
of P,, we can ezactly write down the acceptance probability of |¢)) by R, and this will turn out
to suffice for the entire correctness analysis.

Lemma 5.13. Suppose |1)) is an eigenvector of P, accepted by Q with probability p. Then, for
any i € {0,...,N — 1}, Prly; = yit1] = p. (Thus, Prly; # yi+1] =1—p.)

The magic of Lemma is that even though a priori the action of R on |¢)) seems difficult
to predict, when [¢) is an eigenvector of P, each step 2(a) and 2(b) of R is just a Bernoulli

52

triaﬂ Independently of all previous measurement outcomes, with probability p we don’t flip
our bit, and with probability 1 — p we do flip our bit. This means we can later apply powerful
tail bounds like the Chernoff bound to analyze the acceptance probability of R on eigenvectors

of |y).
Proof of Lemmal[5.13 Assume Py|y) = ply) for 0 < p < 1.

Exercise 5.14. Prove the claim in the setting p =0 and p = 1.

Recall from Equation (j5.3]) that S; and E; denote successful projections at the start and end of
verification (i.e. onto the original input x and all-zeroes ancilla, and onto the accepting output
qubit, respectively), and Sp = I — S} and Ey = [— E;. Define for brevity

|¢) :=|z)al))pl0---0)c and T :=S$1QTE1QS;.

A key identity is now the following.

Exercise 5.15. Prove that
T|¢) = $1Q'E1QS1|¢) = p|@). (5.4)

Why must we include projectors Sy in the definition of I' to make this a well-defined equality?

To show the claim, we trace through the first iteration of the while loop of R.

e The first run of Step 2(a) applies @ to |¢). Since Ey + E; = I, this step hence performs

mapping
[9) = Ql¢) = EoQ|o) + E1Q]¢).

If we now measure {Ey, F1}, we collapse to state

1) 1= ol with probability || E1Q16) [} = (01! £1Q1¢) = .

Exercise 5.16. Why is (¢|QTE1Q|¢) = p? (Hint: What is S1|¢)?)

Using the identity g = I — F1, we analogously collapse to
EoQ|¢)

leo) = TEQI) 1, with probability || EoQ|¢) |3 = ($|QTEeQl¢) = 1-(¢|Q"E1Q|¢) = 1—p.
Note that together, these statements imply
Qlo) = /1 —pleo) + v/pler). (5.5)

3Recall from probability theory that Bernoulli trials refer to independently repeating a two-outcome sampling
experiment.

93

e After Step 2(a), we have either |eg) or |e1). Step 2(b) now applies Qf, yielding one of two
possible transitions:

Qfler) = SoQfler) + S1Q"|er) (5.6)
Q'len) = S0Q'leo) +51Q"|eo) (5.7)
We may simplify each term on the right hand side as:
$1Q'er) = SlQ*Elﬁ’@ } 16) = VBlo) (5.8)
50Q1en) SQTEI\C}'@ }s Q' EQlo) (5.9)
Hoy (EoQle) 1 —
$iQflen) = $1Q' = = = (19) ~TI¢)) =/1-plo) (5.10)
50Qffe0) = Q”jolQ’@ = (Sl0) ~ Q' F1Q19)) = ——=50Q' Erqia)

Exercise 5.17. Prove each of the four statements above. (Hint: Use the fact that Ey +
E, = 1. Also, why is Sp|¢) = 07)

Exercise 5.18. What is || SoQTE1Q|¢) Hz?

Exercise 5.19. Prove that after we measure the right hand side of Equation with
{So, S1}, we obtain S; with probability p and Sy with probability 1 — p. Similarly, mea-
suring the right hand side of Equation with Sy, S1 yields Sy with probability p and
S1 with probability 1 — p.

Exercise 5.20. Conclude from the last exercise that after the first iteration of the while
loop, y1 = y2 with probability p. Accordingly, y1 # yo with probability 1 — p

This is precisely the behavior we are seeking. In sum, the analysis of Step 2(b) yields the
following.

Exercise 5.21. Define |sg) := H;}%% and |s1) := |¢). Prove the following:
2

Qlea) = —v/plso) + /1 —pls1)
Qler) = /1T —plso) + v/pls1).

Exercise 5.22. Prove that Q|so) = —/pleo) + /1 — ple1). (Hint: Use Equation (5.4)).)

It will now be fruitful to step back and see the bigger picture which is emerging. Define
Sy := Span(|ep), |e1)) and Sy, := Span(|sg), |s1)). Then, our analysis above showed that @ maps
S, into S,. Conversely, QT maps S, back into S,,.

o4

Exercise 5.23. Prove that {|ep), |e1)} is an orthonormal set.
Exercise 5.24. Prove that {|so), |s1)} is an orthonormal set.

In other words, the evolution of R is entirely confined in a two-dimensional spaces S, and S,,.
With respect to these spaces, our analysis reveals the entire action of Q:

Qlso) = —v/Pleo) + /1 —pler)
Qls1) = /1 —Dpleo) + V/pler)

Qfleo) = —/plso) + /1 —pls1)
Qfler) = /T—plso) + v/ls1)-

We are now ready to finish the proof of Lemma [5.13]

Exercise 5.25. Observe that S;|s;) = |s;), and S;|sie1) = 0. Similarly, F;le;) = |e;), and
Eileis1) = 0. Why can we now conclude the analysis for a single loop iteration suffices to prove
all of Lemma [B.137 O

With Lemma in hand, we have a clean characterization of how R behaves on any proof
|1)) which is an eigenvector of P,. We are now ready to complete the proof of Theorem

Correctness proof for YES case. In the YES case, from Section we know that the optimal
proof for Q) is an eigenvector [¢) of P, accepted with probability p > 2/3. Thus, by Lemmal5.13]
for each i € {0,...,N — 1}, y; = y;4+1 with probability at least 2/3. By the Chernoff bound
(which we may apply since Lemma reduces us to Bernoulli trials), the claim now follows.

Correctness proof for NO case. In the NO case, the optimal proof for @ is an eigenvector |1))
of P, accepted with probability p < 1/3. Unfortunately, here we cannot proceed as in the YES
case by assuming a cheating prover sends an eigenvector of P, as a proof. Luckily, it turns out
that by applying a similar, but slightly more general, analysis to that above, one can explicitly

show the desired bound for the NO case as well. We omit this additional analysis.
O

5.3 Relationship to other classes

5.3.1 The many cousins of QMA

There are a number of variants of QMA, the most prominent of which are arguably the following
(in no particular order).

¢ One-Sided Error Quantum Merlin Arthur (QMA ;). QMA with perfect complete-
ness, i.e. in the YES case there exists a proof accepted with probability 1.

¢ Quantum Classical Merlin Arthur (QCMA). QMA, but with a classical proof y €
{0,137,

e Stoquastic Merlin Arthur (StogMA). QMA, except (1) the ancilla qubits are allowed
to be initialized (independently) to either |0) or |+), (2) the verification circuit consists
solely of reversible classical gates, and (3) the final single-qubit measurement is in the X

basis (i.e. {|+),|—)}

95

e Quantum Merlin Arthur with Two Proofs (QMA(2)) QMA, except the proof is
promised to be a tensor product of two proofs, i.e. [1)) = |p1) ® |p2) for some |@1), |d2).

Again, despite the nomenclature, each of these is a class of promise problems, not a class of
languages. Here is what is known about the relationships between these:

e BQP C QCMA C QMA; C QMA C QMA(2) C NEXP.
Exercise 5.26. Which of these inclusions are trivial? Why?

Exercise 5.27. Why is it not clear that QMA = QMA(2)?

Two remarks: (1) The inclusion QCMA C QMA, follows because one can show QCMA =
QCMA,, i.e. without loss of generality we may assume QCMA has perfect completeness.
The analogous statement is not known for QMA. (2) The containment QMA (2) C NEXP
is, remarkably and sadly, the best trivial upper bound on QMA(2). This leaves quite a
chasm between QMA and QMA(2), with the former contained inlﬂ PP. The only known
non—tm’viaﬂ upper bound on QMA(2) is

QMA(2) C QS C NEXP,

where QX3 is a quantum analoguelﬂ of X%, the third level of PH. It is not yet clear if this
should be construed as strong evidence that QMA(2) # NEXP; not much is known about
QX3, and it is entirely possible that QMA(2) = QX3 = NEXP. On the other hand, if
the study of the classical analogue of QX3 is any guide, it would suggest QMA(2) # QX3
(and hence QMA(2) # NEXP), as classically alternating quantifiers are strongly believed
to add power to a proof system (otherwise, PH collapses).

Exercise 5.28. Why would QMA(2) = NEXP imply that alternating quantifiers do not
strictly increase the power of a QMA(2) proof system?

e As for StogMA, it is a rather strange fellow — in terms of lower bounds, it is the only
“quantum” cousin of QMA which is not believed to contain BQP. Indeed, StogMA C PH
(more precisely, it is in Arthur-Merlin (AM)), whereas it is believed BQP is not contained
in PH. In terms of upper bounds, it is not clear whether StogMA C QCMA; this because
the former has a quantum proof but “classical” verification, whereas the latter has a
classical proof but quantum verification. In fact, it is not even known whether weak error
reduction holdsﬂ for StogMA, since the final X-basis measurement appears to prevent the
standard “parallel repetition plus majority-vote” technique.

4Recall PP C PSPACE C EXP C NEXP.

"That QMA(2) C QX3 is trivial; it is the containment QX3 C NEXP which is non-trivial.

SRoughly, in a YES instance for QX3, there is a proof pi, such that for all proofs p2, there exists a ps leading
the quantum verifier to accept (p1, p2, p3) with probability at least 2/3. Analogously for a NO instance, for all
proofs p1, there is a proof p2, such that for all ps the quantum verifier accepts with probability at most 1/3.
All proofs are polynomial-size and allowed to be mixed. In strong contrast to QMA, it is not clear whether
the proofs can be assumed pure without loss of generality.

"Very recently, it was shown that if one could reduce the error bounds for StogMA to 1 — o(1/ poly(n)) versus
O(1), then StogMA = MA. (Note the “little-oh” here — the result does not apply to inverse polynomial error
reduction.) Whether this should be seen as evidence that error reduction for StogMA is impossible, or that
StogMA = MA, is yet to be seen.

o6

Upper bounds on QMA. The most “mainstream” upper bound on QMA is QMA C PP.
However, there are two strictly stronger known bounds (assuming standard complexity theoretic
conjectures):

1. QMA C AygPP C PP. Rather than defining AgPP, we will define the quantum class
SBQP = AoPP. SBQP is the class of decision problems for which there exists a quantum
polynomial time algorithm which, on input x € {0,1}", accepts in the YES case with
probability at least 2-277(2) and accepts in the NO case with probability at most 2~ 7(#])
for some polynomial p. Note that it is strongly believed that SBQP = AgPP # PP, since
equality would imply PH C PP.

2. QMA C pQMAlog] ¢ pp. Here, PAMAllogl g the set of decision problems solved by a P
machine which can make at most O(logn) (adaptive) queries to a QMA oracle. Again, this
strictly separates QMA from PP, in the sense that it is unlikely that QMA = pQMA[log],
This is because the latter contains both QMA and co-QMA (the complement of QMA),
and so QMA = POMAlog] wayld have the unlikely implication that QMA D co-QMA.

Exercise 5.29. Why does co-QMA C PMAllog] 147

While these two upper bounds on QMA are likely stronger than PP, we now close the lecture by
showing the weaker bound QMA C PP; this latter containment follows via a simple application
of strong error reduction.

5.3.2 Using strong error reduction to show QMA C PP
Theorem 5.30. QMA C PP.

Proof idea. The proof idea is most easily grasped by using it to show NP C PP. For this,
suppose we have a 3-SAT input formula ¢ : {0,1}"" — {0,1}. To put NP in PP, our goal is
to show that there exists a probabilistic polynomial-time algorithm A which, given ¢, accepts
with probability strictly larger than 1/2 if ¢ is satisfiable, and accepts with probability at most
1/2 otherwise. The approach for doing so is simple — if and only if ¢ is satisfiable, it has a
satisfying assignment z; so, A randomly picks an assignment y € {0,1}", and outputs ¢(y).

Exercise 5.31. Prove that if ¢ is satisfiable, A accepts with probability at least 1/2". On the
other hand, if ¢ is unsatisfiable, A accepts with probability 0. Why is this enough to imply
3-SAT € PP?

Proof of Theorem[5.30L We shall show QMA C PQP, for PQP defined essentially identically to
PP except with a P-uniform quantum circuit family in place of a Turing machine. It is known
that PQP = PP, whose proof we omit here.

Let A = (Ayes; Ano, Ainy) be a QMA promise problem, and x € {0,1}" an input. The overall
proof idea is the same as in the classical case — the PQP machine A simply “guesses” a quantum
proof |¢) € Bp(n), feeds it into verifier @, and outputs @,’s answer. Formally, to model a
“random proof” [1)), A instead feeds @, the maximally mixed state I/2P(" e £(Bp(n)).

o7

Exercise 5.32. Why does zpﬁl correctly model a random pure state |¢)) € Bp(n)?
Recall we may now write the acceptance probability of @, on proof I/ 2P(1) ag (for POVM P,
defined as in Equation (j5.1))

1 1
Pr[accept] = Tr <Pm . 2p(n)> = WTr(Pw).

Exercise 5.33. Recall that P, = 0, and that Tr(P,) is the sum of all eigenvalues of P,. Why
does the Prf[accept] above not suffice to separate YES from NO cases of A?

As the exercise above shows, this naive idea alone does not work. Rather, we must first use
strong error reduction to amplify the completeness and soundness parameters of @),. Specifi-
cally, recall that @,, takes in p(n) proof qubits, for some polynomial p. For any polynomial r,
Theorem says we may map @, to a new circuit R,, which still takes in p(n) proof qubits,
but has completeness and soundness parameters 1 — 277(") and 277" respectively. This now
suffices to complete the proof.

Exercise 5.34. Prove that for sufficiently large fixed r, feeding I/2" into R,, and outputting
its answer suffices to decide in PQP whether x € Ay or o € A,,. More formally, let Pf denote
the POVM for verifier R,, (c.f. Equation (5.1])). Prove that:

1 R 1 1
o If x € Ayes; then WTI‘(P:L') > 5p(n) Zp(m)Fr(n) -

1 1
[] If T € An07 then op(n) Tr(PCCR) S r(n) *

What choice of r hence suffices to distinguish YES from NO cases in PQP? (Hint: You do not
need to use the precise structure of Pf; the relationship between the optimal probability of
acceptance of R,, and the eigenvalues of P}* suffices.)

Exercise 5.35. Would the approach above work if we used weak error reduction instead of
strong error reduction? Why or why not? O

o8

6 The quantum Cook-Levin theorem

“Steve Cook was primarily in math but also in the new CS Department. It is to
our everlasting shame that we were unable to persuade the math department to give
him tenure. Perhaps they would have done so if he had published his proof of the
NP-completeness of satisfiability a little earlier.”

— Richard Karp, speaking about UC Berkeley Computer Science in the late 1960’s

Introduction. Among the many advances of theoretical computer science during the 20th
century, three are unquestionably among the crown jewels of the field: First, that there exist
unsolvable computational problems (Turing’s proof that the Halting Problem is undecidable,
with Godel’s incompleteness theorem acting as an important precursor). Second, even among
solvable problems, not all of them can be solved efficiently (the Cook-Levin theorem, which
spawned the theory of NP-completeness and arguably founded the field of complexity theory).
Third, some problems are not only hard to solve exactly, but are even hard to solve approrimately
(the PCP theorem of the 1990’s).

In this lecture, we focus on the Cook-Levin theorem, and in particular its quantum analogue.
The latter roughly says that the quantum analogue of Boolean Constraint Satisfaction, known as
the Local Hamiltonian problem, is QMA-complete. Thus, just as the Cook-Levin theorem says
that (assuming P # NP) 3-SAT cannot be solved in polynomial time, the quantum Cook-Levin
theorem implies the Local Hamiltonian problem has no efficient classical or quantum solution.

This statement marks a striking departure from the realm of computation theory into the
realm of quantum physics. For the quantum Cook-Levin theorem implies that, at least in
principle, there exist quantum many-body systems which cannot be “cooled to their lowest energy
configuration in polynomial time”. This is particularly enlightening given the original motivation
for quantum computation, at least from the perspective of Richard Feynman — that quantum
physics seems “difficult” to study with classical computers due to the exponential blowup in
dimension. Indeed, the quantum Cook-Levin formally confirms Feynman’s intuition, by showing
that (assuming QMA # BQP) certain properties of low-temperature quantum systems simply
cannot be computed efficiently in polynomial time.

This lecture begins by briefly reviewing the classical Cook-Levin theorem, whose techniques
will inspire its quantum generalization. We then introduce and motivate “local Hamiltoni-
ans”, followed by a proof of the quantum Cook-Levin Theorem. For the latter, the soundness
proof technique introduces the Geometric Lemma, a lemma with applications beyond quantum
complexity theory.

6.1 The Cook-Levin theorem

Recall that the Cook-Levin theorem states the following, for SAT the generalization of k-SAT
in which clauses need not be of size at most k.

Theorem 6.1 (Cook-Levin Theorem). SAT is NP-complete.

99

In other words, any instance x of a decision problem L in NP can be efficiently encoded into
a CNF Boolean formula ¢ : {0,1}"™ — {0,1}, such that x € L if and only if ¢ is satisfiable.
The high-level outline of the proof is also exploited for the quantum Cook-Levin theorem; let
us hence sketch a proof of Theorem now.

Proof. Let L C {0,1}" be a language with NP verifier (i.e. deterministic TM) M = (Q, %, T, 4, g0, qaccept Greject)
and z € {0,1}" an input. Recall here that @ is the set of states for M, § its transition function,
and I its tape alphabet (which contains the input alphabet,).
We sketch a polynomial-time many-one reduction to SAT, i.e. to a CNF formula ¢ : {0,1}" —
{0, 1} which is satisfiable if and only if z € L. To do so, we design ¢ so that it “simulates” M.
Any such simulation must presumably capture the following three key properties:

e Tape initialization. Before M begins, its tape must be initialized correctly with the
input z and blank symbols elsewhere.

e Correct propagation. Step i + 1 of the computation must legally follow from step ¢
according to the rules of the transition function ¢ for M.

e Correct output. Once the final step of the computation ends, the state of M should be
Gaccept if and only if z € L.

With this high-level view in mind, we shall design ¢ to consist of four “components”, ¢in, @prop, Pout, Palpha,
the first three of which correspond to the three bullet points above, respectively.

Construction sketch. We begin by viewing the computation of M as a sequence of configu-
rations of M arranged as rows of a table or tableau. Specifically, the ith row of the tableau
encodes the ith configuration entered by M. Here, recall that a configuration is a snapshot in
time of M, and is given by string xqy for z,y € I'* and q € @), where xy denote the current
tape contents and ¢ the current state of M. The placement of ¢ to the left of y indicates that
the head of M is on the first bit of y.

Exercise 6.2. What does the starting configuration for M look like on input z? How about
the accepting configuration?

As a first step, we require some way to map the symbols which can appear in a configuration
(i.e. QUT) to the single-bit literals which ¢ can use. This is achieved by the clever idea of
defining, for any symbol s € Q UT', an indicator variable z;;s € {0,1}, which is set to 1 if and
only if cell (i,7) in the tableau contains symbol s. Thus, for example, we can “simulate” a
particular cell (¢, 7) containing at least one valid symbol via formula \/ sequr Tijs-

Exercise 6.3. Fix a cell position (i, j). Give a CNF formula encoding the constraint “cell (4, j)
contains precisely one symbol from Q UT”.

Exercise 6.4. Use the previous exercise to build ¢,ipha, which should enforce that all cells (3, j)
contain precisely one symbol from Q UT'.

With our mapping from @ U T to binary literals in place, we can now sketch the remaining
components of ¢.

60

e Tape initialization: ¢;,. This CNF formula enforces that the first row of the tableau
contains the correct starting configuration for M on input z (where recall gy € @ is the
start state of M). Namely, if the start configuration is gpz1 - - zpy1---ys U - -+, for some
proof y, and where U denotes blank symbols on the tape, the formula we construct is:

Gin = T11go N T122y N T1325 N - AT1 1,2 AN T1ngst1,u A

Above, note that we cannot encode proof y into this formula, since we do not know y
ahead of time.

Exercise 6.5. Fill in the rest of ¢i,. Note that, obviously, we cannot encode all blank
symbols on the infinite length tape explicitly into ¢i,. Rather, we may truncate the tape
at a finite length — how many cells of the tape are sufficient to keep around?

e Correct output: ¢out. This CNF formula checks whether there exists a time step in
which M enters its accepting state:

¢out = \/ Lijqaccept *
(4.5)

e Correct propagation: ¢prop. Finally, we must enforce that row ¢ + 1 of the tableau
correctly follows from row i. We omit the full details of this construction, but the key
observation is that computation is local — from time step i to ¢ + 1, the string encoding
the configuration of M can only change at the positions directly adjacent to the head’s
location. For example, if given configuration ¢; = 000g111, M writes 0, moves the head
right, and enters state ¢/, our new configuration is ¢;y; = 0000¢'11 — note that only two
symbols changed between configurations from ¢ to ¢ + 1.

Using this observation, it turns out that to ensure that configuration ¢;;; follows from c;,

it suffices to check all 2 x 3 “windows” between rows ¢ and i+ 1 of the tableau. Continuing
our example above, rows ¢ and 7 + 1 of our tableau

000g¢ 1 11
0000 ¢ 11

are fully characterized by the set of five 2 x 3 windows:

0 0O 0 0 ¢q 0 g 1 g 1 1 1 1
0 0O 0 00 0 0 ¢ 0 ¢ 1 qg 1
Here, for example, the first window depicts the first three symbols of rows ¢ and i+ 1, the

second window symbols 2 to 4 of rows ¢ and ¢ + 1, and so forth. Encoding each of these
windows into a CNF formula is done analogously to (e.g.) dout-

1
: (6.1)

Exercise 6.6. Give a CNF formula encoding the constraint that all windows of Equa-
tion (6.1)) contain the specified symbols.

Exercise 6.7. Checking 2 x 3 windows of rows i and 7+ 1 seems a bit funny — why does
the seemingly more natural idea of simply checking all of row ¢ and ¢ 4+ 1 simultaneously
not work? (Hint: How many possible ways are there to validly fill out rows ¢ and i + 1
of the tableau? How many terms would this lead to in your CNF formula encoding that
row ¢ + 1 correctly follows from row 7)

Finally, the output of the construction is CNF formula ¢ = ¢aipha A in A Pout A Pprop-

61

Exercise 6.8. Assuming ¢pop correctly enforces valid propagation from row ¢ to row i 4 1 of
the tableau, why is ¢ satisfiable if and only if z € L? O

It is worth pausing to reflect on the crucial fact that made the Cook-Levin theorem possible
— that computation (in the TM model) is local, meaning only bits around the head can change
in any give time step. Remarkably, it turns out that this is no coincidence; in Section we
shall see that Nature itself also behaves in a local fashion.

6.2 Local Hamiltonians and Boolean Constraint Satisfaction

We now move from Boolean constraint satisfaction to “quantum constraint satisfaction”. Our
motivating theme, foreshadowed by the end of Section shall be that like “computation”,
Nature is “local”.

Hamiltonians. To appreciate the connection between quantum constraint satisfaction and
quantum mechanics, we must return to one of the defining equations of the theory: Schrédinger’s
equation. This equation prescribes how quantum systems evolve in time. Namely, given a start-
ing state |¢) € Bn, the rate of change of |¢)) with respect to time ¢ is given by the differential
equation (ignoring Planck’s constant)

d
M0 i,

where H € Herm (() Bn) is known as a Hamiltonian. In other words, the change in |¢)) through
time ¢ is fully specified by H. By solving this equation, one obtains that after time ¢, our new
state i) is given by

) = e).

Exercise 6.9. What type of operator is e *#!? How does this explain the time evolution
postulate of quantum mechanics, which states that the set of allowed operations on quantum
states is precisely the set of unitary operations?

Local Hamiltonians. Schrodinger’s equation tells us that, in principle, any Hamiltonian H €
Herm (Bn) describes the evolution of some quantum system. The natural question is now:
Which Hamiltonians actually arise in Nature? It is here that Nature takes a page from the-
oretical computation’s book (or perhaps it is theoretical computation which has taken a page
from Nature’s book), in that essentially all known naturally occurring quantum systems evolve
according to local Hamiltonians, which we now define.

Definition 6.10 (k-local Hamiltonian). A Hermitian operator H € Herm (() Bn) acting on n
qubits is a k-local Hamiltonian if it can be written

H= > Hs ® Ijaps;
{SISCln] .. |5|=k)

where each operator Hg € Herm (() Bk) acts on the subset S of qubits. (Note that we allow
Hg = 0.) The eigenvalues of H denote energy levels of the system described by H, with
Amin (H) denoting the ground state energy. The eigenvectors corresponding to Amin(H) are
ground states.)

62

Let us dissect this definition, as it will play a crucial role in the remainder of this course.

e Definition [6.10] says that the action of H on all n qubits is fully specified by a set of
local operators Hg, each acting non-trivially on some subset S of k£ out of n qubits. For
example, the following are 2-local Hamiltonians (subscripts denote qubit indexes acted on
by the respective operators, and Z is the Pauli operator):

Hy =2, ® Zs, Hy=721®Z@ 34+ 1 @ Zy®@Z3 @Iy + 115 ® Z3 R Zy.

The first of these acts on a 2-qubit system, and the second on a 4-qubit system. For brevity,
we typically omit the identity terms and simply write Ho = Z1 ® Zo + Zo @ Z3+ 23 Z4.

Exercise 6.11. What are the matrix representations of H; and Hy above?

e Hamiltonians describing physical quantum systems are typicallyﬂ k-local for constant k,
and there is something very special about this, which you will explore in the next exercise.

Exercise 6.12. How many bits are required to specify an arbitrary Hamiltonian H? How
about a k-local Hamiltonian for k¥ € O(1)? What does this tell us about our ability to
efficiently represent the dynamics of typical physical systems in Nature?

Thus, although in principle, one requires exponential space to write down the Hamiltonian
governing an arbitrary many-body quantum system, in practice this is one place we catch
a break — for physical systems, we can at least succinctly describe the rules governing
their time evolution. However, let us be clear that this is just a minor concession by
quantum physics — for even though we can describe the dynamics, computing properties
of the evolution is complexity theoretically hard.

Physical motivation. The eigenvalues of a local Hamiltonian (more generally, of any Hamilto-
nian) are known as energy levels, literally because they represent the energy levels the system
may settle into. The quantum state of the system at energy level A is none other than the
eigenvector |\) satisfying H|\) = A|N).

Remark. Despite the fact that quantum time evolution is continuous (i.e. described by unitary
maps), the Schrodinger equation highlights that a quantum system may settle into only a dis-
crete or “quantized” set of energy values {\;}. Indeed, this type of “quantization” phenomenon
1s precisely what gives quantum mechanics its name.

The ground state energy Amin(H) plays a particularly important role — it describes the
energy level the system will relax into when cooled to very low temperature (think billionths
of a degree above absolute zer(EI). This regime is particularly important, as it gives rise to

IThis is an idealization — for any actual many-body quantum system, one can only guess at what the defining
Hamiltonian should be, and attempt to corroborate this via experiment. Thus, what we write down as
“the defining local Hamiltonian” for a system is really a well-motivated model or approximation to the true
dynamics of the system. It just so happens that setting k& € O(1) typically suffices to accurately reproduce
the desired local physical properties of quantum systems.

2 Again, this is an excellent opportunity to procrastinate by heading to the Wikipedia page for “absolute zero”.
For example, a 1999 experiment cooled nuclear spins in rhodium metal to 0.0000000001 Kelvin. (Recall
absolute zero is defined as 0 Kelvin.)

63

exotic phenomena such as superconductivity and superfluidity. It is thus of utmost importance
to fields such as materials design to be able to understand and predict the properties of such
low temperature systems; in particular, this means one wishes to understand the properties of
Amin () and its corresponding eigenvector, the ground state |A\pmin(H)). Unfortunately, it turns
out that Apin(H) is hard to estimate, not least of which because one can embed the answers to
NP-complete problems such as 3-SAT into it, as we now discuss.

Embedding k-SAT into local Hamiltonians. We said above that even though a k-local Hamil-
tonian H € Herm (() Bn) has a succinct representation in n, computing properties of H is hard.
The intuitive reason for this is that H is really the quantum analogue of a k-SAT formula
¢ : {0,1}" — {0,1}; even though ¢ describes a truth table of size 2", it also has a succinct
representation of size poly(n), and computing its properties is NP-complete. We may formalize
this connection as follows.

Consider a 2-SAT clause ¢ = (x; V T2), which has unique unsatisfying assignment |[01). We
may embed this into a 2-local Hamiltonian term

o O O O
O O = O
o O O O
o O O O

so that any satisfying assignment x € {0, 1}2 to ¢ is a ground state of H. More generally, we
think of the rows of H as labelled by binary strings 00, 01, 10, 11, and denote the label of row r
as [(r). Then, for a 2-SAT constraint ¢, define H to be all-zeroes except on the diagonal, where
we place a 1 if and only if I(r) is a non-satisfying assignment to c.

Exercise 6.13. What is the ground state energy of H?

Exercise 6.14. Prove that for any = € {0,1}%, (z|H|z) = 0 if ¢(z) = 1, and (z|H|z) = 1 if
¢(x) = 0. Conclude that any satisfying assignment to ¢ is a ground state of H. Given the
structure of H, why can we assume without loss of generality that the best assignment is a
standard basis state?

This construction generalizes directly to any Boolean function ¢ : {0, 1}k — 0,1, so that (say)
a 3-SAT clause ¢ is embedded into a 2F x 2F quantum constraint H.

Exercise 6.15. Give the quantum constraint H encoding the 3-SAT clause ¢ = (Z1 V 22 V T3).

Suppose now we have three clauses ¢y = (z1V z2), co = (T2 V x3), ¢3 = (23 V 24). The full CNF
formula ¢ = ¢1 A c2 A c3 is given by adding all quantum constraints H,, for each clause ¢;:

H = Hc1 ®13,4 + I ®ch ® Iy —i—ILQ ®Hc3.

Exercise 6.16. Prove that |z) for = € {0,1}* satisfies (z|H|z) = 0 if and only if ¢(z) = 1.
More generally, prove that (x|H|z) counts the number of unsatisfied clauses for x with respect

to ¢.

64

Exercise 6.17. We are almost ready to conclude that “the ground state energy of H equals 0
if and only if ¢ is satisfiable”, thus yielding that estimating Ay, (H) is NP-hard if ¢ is a 3-SAT
formula. It only remains to prove that if ¢ is unsatisfiable, without loss of generality the best
assignment [1)) € Bn (i.e. minimizing (¢|H |¢)) is an n-bit string |x), as opposed to a genuinely
quantum state on n qubits; show this.

Exercise 6.18. The ground state energy of H above encodes something more precise than
whether ¢ is satisfiable — what does it actually count?

Exercise 6.19. Give a 2-local Hamiltonian whose ground state energy encodes the problem
MAX CUT. Recall the latter is defined as: Given a simple, undirected graph G = (V| E),
partition F into sets E1 and Fs so that the maximum number of edges possible crosses between
E; and Es. (Hint: For each edge (4, j) € E, start by thinking about 2-local quantum constraint
H;j =1 — Z; ® Zj; what is the matrix representation of H;;?)

6.3 The quantum Cook-Levin theorem

We have seen in Section [6.2) that, given a 3-local Hamiltonian H as input, estimating its ground
state energy A\min(H) allows us to decide 3-SAT instances ¢, and is thus NP-hard. The problem
of estimating Apin(H) more generally (i.e. for non-diagonal H) is sufficiently important to
warrant its own name.

Definition 6.20 (k-local Hamiltonian problem (k-LH)). Fiz a polynomial p : N — R*. The
promise problem k-LH is defined as follows.

o Input:
— A k-local Hamiltonian H =) ¢ Hg € Herm (() Bn).

— Efficiently computable threshold functions a(n),3(n) € R satisfying promise gap
a(n) —p(n) >1/p(n) Vn > 1.

e Qutput:
- If Amin(H) < a(n)7 accept.
- If)\min(H) > 6(”)7 Tejemf'

— Else, accept or reject arbitrarily.

A few remarks are in order: (1) Unlike the examples of k-SAT from Section[6.2] in Definition[6.20]
H need not be diagonal in the standard basis, and the sets of qubits S acted on Hg need not
be constrained in any particular geometric fashion (say, on a 1D chain). (2) Technically, one
should write k-LH(p), since the problem is parameterized by the promise gap polynomial p.
We will implicitly set p to the polynomial arising from the QMA-hardness reduction for k-LH
below, and henceforth simply write k-LH. (3) The fact that the promise gap a(n) — B(n) is at
least inverse polynomial is crucial; making the gap, say, inverse exponential yields a much more
difficult PSPACE-complete problem, rather than a QMA-complete problem for k-LLH as defined
here. (4) In principle, the number of terms Hg, denoted m, need not be polynomial in n, the
number of qubits. Thus, p, «, and 8 should more generally depend on both m and n. However,
for simplicity and due to physical motivation, the community typically assumes m € poly(n)
and thus drops the m parameter.

65

Exercise 6.21. Why is it not a problem if, say, m € ©(2")? (Hint: To a computer scientist,
relative to which input parameter do we typically define run-times? (It’s not just the number
of qubits, n.))

Statement of the quantum Cook-Levin theorem. The quantum Cook-Levin theorem of Ki-
taev states that, just as k-SAT is NP-complete for k > 3, k-LH is QMA-complete for £ > 5.
In other words, Feynman’s intuition was right — estimating the ground state energy of a local
Hamiltonian, and hence more generally properties of quantum many-body systems, is provably
hard (assuming QMA # BQP).

Theorem 6.22 (Quantum Cook-Levin Theorem). There exists an efficiently computable poly-
nomial p : N+ R such that 5-LH with promise gap p is QMA-complete.

The QMA-hardness result above can be improved to k > 2, even if one has (higher-dimensional)
quantum systems on a 1D chain. Due to time constraints and for pedagogical reasons, however,
we shall restrict our exposition to Theorem As with any completeness proof, we proceed
by showing containment in QMA in Section followed by a proof of QMA-hardness in
Section [6.3.21

6.3.1 Containment in QMA
Lemma 6.23. For any polynomial p : N +— RT and k € O(logn), k-LH € QMA.

Proof. Let (H,«,) be an instance of k-LH. We wish to decide in QMA whether Apin(H) < «
or Amin(H) > B, assuming one of the two is the case. In the YES case, the proof is obvious —
the prover sends the ground state [¢) satisfying H|1)) = Apin(H)|10). The question is: How do
we verify that (Y| H|Y) < a?

The key insight is that H is Hermitian, and hence may be viewed as an observable. Recall that
for any observable H with spectral decomposition H = . \;[¢;) (4|, H encodes a projective
measurement in basis {|¢;)} with corresponding outcomes \;. Moreover, the expected value of
measuring |¢) with H is

Tr(H|)(4]) = (W[H[).

In other words, if we could simulate a measurement in the eigenbasis of H, then we could
estimate (Y|H[1)).

Exercise 6.24. What does it mean to “simulate a measurement in a given basis B”? (Hint:
Which unitary operation must we be able to perform if we restrict our circuits to only perform
measurements in the standard basis, as we did for BQP?)

Unfortunately, the eigenbasis of H may be quite complicated; thus, we cannot directly mea-
sure with respect to it. However, the local structure of H allows us to approximate such a
measurement in a simple fashion: Since by linearity

(WIHY) = (Y[Hgly),

S

intuitively we may equivalently measure the local terms Hg.

66

Exercise 6.25. Suppose Hg € Herm (Bk) for k € O(logn). How can one efficiently simulate a
measurement of |¢)) with respect to the eigenbasis of Hg? (Hint: Use the previous exercise on
simulating arbitrary measurements via standard basis measurements.)

We hence apply the following procedure, denoted V: Suppose there are m terms Hg. Pick a
term Hg uniformly at random from H, and simulate a measurement with respect to observable
(|Hg|v). Since expectation is linear, the total expectation for this procedure with respect to
the random choice of S is

S Prlpicking S] - (6{Hsl) = S (| Hsl) = (] (Z HS> [9) = (Wl H).
S

S S

Exercise 6.26. In principle, m may be exponential with respect to the number of qubits n.
Why is this not a problem for the protocol above? (Hint: With respect to which parameter
must we run efficiently?)

Recalling the Courant-Fischer variational characterization of eigenvalues from Lecture 4, we
conclude that in the YES case, there exists a quantum proof |1) such that the expected output
value of V' is at most a;/m, and in the NO case, any proof [¢)) has expected value at least §/m.

There is only one thing left to do — the definition of QMA says nothing about expectation
values of the verification. Rather, we must strengthen our expectation bounds for V' to a high-
probability statement: In the YES case, our verifier must accept with probability at least 2/3,
and in the NO case with probability at most 1/3.

Exercise 6.27. Give an example of a probability distribution over an appropriate sample space
so that the expected value is 0, and yet the probability of obtaining any outcome with value v
satisfying |v| < e (for some fixed € > 0) is zero. In other words, a statement about expectation
is in general not sufficient to yield a high-probability statement.

To give a high probability statement, we employ the Hdéffding bound, which is worth knowing
in its own right. Let €2 C R denote our sample space, meaning the union over all eigenvalues
of all terms Hg. Let X; € € denote the random variable corresponding to the measurement
outcome of the ith run of V| given state |¢). Intuitively, if we repeat V' N times and take the
average measurement result, A := (Zf\; 1 Xi)/N, we might expect A to approximate the true
expected value, (¢)|H|¢). To formalize this, the Hoffding bound says that if a; < X; < b; for all
i, and if the X; are independent, then

aN2¢2

Pr|A— E[A]| > 1] <2 ZLiti—e?

Thus, the final verification procedure, denoted V', is precisely this: Take in N copies of the
proof |1). For each copy |¢;), independently repeat the procedure V to obtain outcome X; € .
If A:= (Zf\il Xi)/N < a+ (1/4p(n)), accept, and if A > § — (1/4p(n)), reject.

Exercise 6.28. Use the Hoffding bound to prove that in the YES case, for sufficiently large
polynomial N, V'’ accepts with probability exponentially close to 1. For simplicity, you may
assume 0 =X Hg < I for all Hg, i.e. all Hg have eigenvalues between 0 and 1, and so a; = 0 and
b; = 1 in the statement of the Hoffding bound.

67

Exercise 6.29. In the NO case, the prover can again cheat by sending a large entangled state
over the N copies of the proof space; why does V' still reject with high probability in this
case? O

6.3.2 Hardness for QMA

In Section we showed k-LH € QMA for k£ € O(logn). Theorem thus immediately
follows from the following lemma.

Lemma 6.30. k-LH is QMA-hard under polynomial-time many-one reductions for k > 5.

Proof. The proof is based on an old trick of Feynman, employed in a clever way by Kitaev;
a similar trick was used in the proof of BQP-completeness for the Matrix Inversion problem
from Lecture 4 (which was discovered after Theorem . To begin, let A = (Ayes; Ano, Ainv)
denote a QMA promise problem. Let z € {0,1}" be an input, with corresponding QMA verifier
V=V, V1 €Bn® Bp(n)® Bg(n). Recall V is a uniformly generated quantum verification
circuit consisting of 1- and 2-qubit unitary gates, acting on registers A (n qubits containing
the input x), B (p(n) qubits containing the proof [¢))), and C (g(n) ancilla qubits initialized to
all zeroes). Assume without loss of generality that the completeness and soundness parameters
for V are 1 — € and €, so that 1 — 2e € Q(1/poly(n)). Our goal is to construct an instance
(H, o, B) of 5-local Hamiltonian H such that, if © € Ay, then Apin(A4) < a, and if € Ay,
then Apin(A4) > S.

Construction. The high level setup is analogous to that of the classical Cook-Levin theorem
(Theorem , in that we will track a sequence of “quantum configurations”’ [i;) over time,
and use “local Hamiltonian checks” to ensure the propagation from configuration [¢;) to [1y41)
proceeds correctly. The main difference is that instead of encoding each configuration as a row
of a tableau, we shall encode it as a term in a superposition, i.e. as), [¢;). Unfortunately,
in doing so, we lose our notion of time, in that for a tableau, time was encoded by position
— the row index of a configuration in the tableau gave away the time step during which the
configuration was entered by the verifier. To recover this, we use an idea of Feynman and attach
a new ancilla register to track time, D, denoted the “clock” register. Thus, we aim to encode
the computation as a state of the form), [¢1) 4 B.C|t)D.

It remains to specify what a “quantum configuration” [i;) for time t should be — but this
is easy, since at time t we have applied the first ¢ gates. In other words, defining |i¢y) =
Vi Vilz)alt) |0 - - 0)¢, we arrive at the so-called history state

m

\/n% ;Vi - Vilz) al¥)Bl0--- 0)clt) p-

Just as Theorem used local Boolean checks to force a tableau to have certain properties, we
now use local Hamiltonian terms to force a quantum state to look like |¢p;st). Specifically, we
will design H = Hi, + Hout + Hprop With the hope of making |tnis) its ground state.

[Vhist) =

e Ancilla initialization: H;,. This constraint enforces that at time step ¢ = 0, the A
register reads |z) for = the input, and the ancilla register C' is all zeroes:

Hipy = —|z2){(z)a® 5@ Ic ®@|0){0|p + I4a®@ I (I —|0---0)(0---0))c ® |0)(0] 5.

68

Exercise 6.31. Prove H;, = O.

Exercise 6.32. Let |¢(y)) := |z)a|Y)Bly)c|0)p. Prove that (¢(y)|Hin|o(y)) equals 0 if
y = 09 and equals 1 if y has Hamming weight at least one.

Exercise 6.33. As stated, Hj, is not local — the projector in C, for example, acts non-
trivially and simultaneously on g(n) qubits. Show that replacing A := (I—[0---0)(0---0|)¢
with A’ = ginl) [1)(1]g, in Hin obeys the same properties regarding [¢(y)) as in the
previous exercise, and that A’ is 1-local. How can we similarly reduce the locality of
(I — |x){x|)a to 1 in Hy,?

e Correct output: Hgy. This constraint checks whether, at time step m, the verifier
accepted (recall the verifier’s output qubit is C):

Houwt = 14 ® Ip ®[0)(0]5, @ [m){m]p.

Exercise 6.34. Why do we project onto |0){0|, above, as opposed to [1)(1],?

Exercise 6.35. Prove Hy,y = 0.
e Correct propagation: Hp.op. Interestingly, specifying the propagation Hamiltonian
Hprop is simpler than specifying ¢prop classically. Namely,

m—1
Hpop = > ~Vig1 ® [t + W){tlp — Vi, @ [t + Lp + T @ |60t + T ® [t + 1) (¢ + 1|,
t=0

where recall V; acts on A, B,C. The intuition is best captured by the first term above,
which encodes the idea that in going from time step t to ¢ + 1, we must apply Vii1.

Exercise 6.36. For any state of the form |¢) = ﬁ Yoimo Ve Vilm)a,s,c|t)p, prove
that Hprop|¢) = 0. Conclude that vectors encoding “correct propagation according to V”
fall into the null space of Hprop.

Finally, the output of the construction is Hamiltonian H = Hi, + Hprop + Hour. We will choose
«a and B as needed based on the correctness analysis below.

Exercise 6.37. Is H as specified 5-local? (Hint: Think about the clock register.) We will
revisit this question at the end of the proof.

Correctness. We now show correctness.

Completeness. Assume first © € Ayes. Then, there exists a proof [1)) accepted by V with
probability at least 1 — e. We must prove that Apin(H) < «, or equivalently, there exists |¢)
such that (¢|H|¢) < a. The obvious choice is to choose |¢) as the history state |¢pist). Then,

<1/Jhist|H|¢hist> = <1/}hist|Hin|¢hist> + <whist|Hout‘whist> + <¢hist‘Hprop‘whist> = <whist‘Hout|¢hist>7

which follows by the previous exercises in this proof.

69

Exercise 6.38. Prove that ({nist| Hout|Vnist) = ﬁ Pr[V rejects |¢)] < mil.

Thus, setting « := we have shown the YES case.

_e
m—+17
Soundness. Assume now x € A,,. Then, for all proofs [¢), V accepts |¢)) with probability
at most e. We must prove that Aymin(H) > 53, or equivalently, for all states |¢), (¢p|H|p) > S.
Unfortunately, due to the universal quantifier on |1)) we can no longer give a simple con-
structive proof as in the YES case. Things are further complicated by the fact that the
terms Hiy, Hout, Hprop do not pairwise commute, so it is not in general true that Amin(H) =
)\min(Hin) +)\min(Hout) +)\min(Hprop)-

Exercise 6.39. If [A, B] = 0 for normal operators A, B, prove that Apin(A + B) = Amin(4) +
Amin(B). (Hint: Recall the simultaneous diagonalization theorem, which states that normal
operators A and B commute if and only if they diagonalize in a common eigenbasis.)

As lower bounding Apin(H) is rather involved, let us state the result below as a lemma, and
prove it in Section [6.3.2]

2(1—
Lemma 6.40. If © € Ay, it holds that Amin(Hin + Hout + Hprop) > g(gjliﬂ\/)}

Thus, setting f = % completes the proof of the NO case, with the exception of one

observation.

Exercise 6.41. Is it true in general that o — 8 > 1/ poly(n)? What value of € suffices for this
to hold, and why can we let e take this value without loss of generality?

The last stand: Locality. We have shown correctness for our many-one reduction to Hamil-
tonian H = Hi, + Hout + Hprop. Congratulations! There is one tiny problem, however; as
foreshadowed in a previous exercise, H is technically not O(1)-local. This is because implicitly
we have assumed that the clock register D is encoded in binary, and is hence ©(logm) qubits
in size. To correctly identify a time step written in binary, we must read all the bits in D; thus,
the projectors onto D in Hin, Hout, Hprop are all O(log m)-local.

The solution is rather simple; let us encode D in wunary. Specifically, encode time ¢t €
{0,...,m} as 1'0™t. There is a tradeoff here — now the D register is m qubits, up from
©(logm) qubits. However, to check the current time step, we can do a local check — namely,
we just have to identify the position of the leading 1 in 1°0"™~*. And this identification can be
made by checking at most 3 qubits of D at a time. With respect to this new encoding, one can
rewrite the terms of Hi,, Hout, Hprop acting on D to obtain a new Hamiltonian H (we omit this
for brevity). Since it now takes three qubit checks to identify the time in register D, and since
Hy,rop now pairs such 3-local clock checks with 2-local gates V;, the new Hamiltonian H we get
is 5-local as claimed.

The final hitch is that we now have to add yet more constraints to H to enforce that the
states appearing in D are indeed valid unary time encodings of form 1!0™ — ¢ (e.g. we want to
disallow setting D to [01"™~1)). This is accomplished by adding a fourth Hamiltonian term to
H:

m—1

Hyab = Iagc® Y _ [0)(0], ® [1)(1],;.
=1

70

Exercise 6.42. Why does Hgt,p, correctly enforce unary time encodings in register D7

Our final Hamiltonian is H = Hi, + Hout + Hprop + Hstan, With the time register encoded in
unary. Of course, now one must revisit the soundness analysis to account for the Hg,p, term
(we do not need to repeat the completeness analysis, since in the YES case an honest prover
will correctly encode D anyway). It turns out this can be done rather easily; nevertheless, again
we shall omit it for brevity. O

Proof of soundness via Geometric Lemma

We now prove the eigenvalue lower bound of Lemma required to complete the soundness
analysis of Theorem

Proof of Lemma[6.40 It will be enlightening to first rewrite Hpyop via a unitary change of basis,
i.e. to instead consider U Hpop U t for some cleverly chosen U.

Exercise 6.43. Why is Amin(Hin + Hprop + Hout) = Amin(UHinUT + UHpopUT + UHow UT)?
Conclude that there is no loss of generality in applying a unitary change of basis for the purposes
of our proof. More generally, observe that for eigenvalue problems, a trick one should always
keep in mind is the potential for viewing the problem in a different basis (which may simplify
the matrices involved).

A convenient change of basis. The intuition for choosing U is this: Hp,op, reproduced below
for convenience,

m—1

Hpop = 3 ~Ver1 ® [t + 1){tlp — Viby @ [0t + 1| + T @ [£)(t]p + T @ [t + 1){t + 1| p,
t=0

“feels” a lot like a random walk on a line. It has four equally weighted terms, two of which
correspond to staying in the same spot (i.e. time step) and doing nothing (i.e. I), one of which
corresponds to moving to right one step on the line (i.e. forward one time step) and applying
Vi+1, and one of which corresponds to moving left one step on the line (i.e. backward one time
step) and applying VzL In fact, if it wasn’t for those pesky V;y1 terms, it would essentially be
a random walk on a line, where with probability 1/2 we stay put, and otherwise we flip a fair
coin and move right one step if we get heads and left one step if we get tails. And indeed, we
can get rid of those V;;1 terms by conjugating Hpop by unitary

m
U= ViViemy
t=0
Exercise 6.44. Prove U is unitary.
Exercise 6.45. Prove that
m—1
UHpopU' =Y —I@ [t + 1)(tlp — T @ [t)(t + 1 + I @ |t)(t]p + 1 @ [t + 1)t + 1] .
t=0

71

The exercise above shows that under the change of basis U, Hpop acts non-trivially only on the
clock register, D. Thus, it has a nice matrix representation via U HpropUT = I4.B,c ® Ap for

1 -1 0 0 O
-1 2 -1 0 O
0

Exercise 6.46. Prove that A indeed has the matrix representation above.

Exercise 6.47. Write down the transition matrix for a random walk on a line of length m + 1,
where with probability 1/2 we stay put, and otherwise we flip a fair coin and move right one step
if we get heads and left one step if we get tails. How does A compare with this transition matrix?

The advantage of this representation for U HpropU T is that it is easier to understand its spectral
decomposition (indeed, the matrix is “almost diagonal” now). Using tools from the analysis of

1D random walks, one may now show that the eigenvalues of A are A\p(A) = 2(1 — cos(wk/(m +
1))), a fact we will use later.

Exercise 6.48. What is the full set of eigenvalues for Hpyop?

Exercise 6.49. Prove that the unique null vector (and in this case, ground state) of A is

(Hint: Checking that Aly) = 0 is straightforward. For uniqueness, use the fact that if a normal
operator has a non-degenerate spectrum (i.e. all eigenvalues are distinct), then it has a unique
eigenbasis.)

By applying the change of basis U, we hence have a full understanding of Hpop. It remains
to understand how U affects the other important quantities in this proof: Hi,, Hout, and |[¢pist)-

Exercise 6.50. Prove that UH;,,U" = Hj,.
Exercise 6.51. Prove that UHowU' = (VI 5 o © Ip)Houw(Va o ® Ip).

Exercise 6.52. Prove that Ul|Ynist) = |2) al¥) 5|0 0)ca|v) .
In the remainder of this proof, we hence work in this new basis and refer to quantities

Hi,n = Hin, H(/)ut = (VAL’BL‘ ® ID)HOUt(VA:B:C ® Ip), H]g)rop = IaBc® Ap, and |¢ilist> =
|[2)al¢)B|0---0)c|v)D-

72

The Geometric Lemma. Recall that our goal is now to prove Amin(H{, + Hjy + Hppop) > 5,
and the difficulty is that the matrices involved do not all pairwise commute. However, one pair

does commute.

Exercise 6.53. Prove that [Hi,, Hout) = 0.

Let us hence write G := H{, + Hy,, so that we want to lower bound Apin(G + H},,,,). For this,
we will need a technical tool known as the Geometric Lemma, whose intuition we now explain.
We know from our previous discussion that G = 0 and H},,, = 0. Thus, for any |¢) the
minimum expectation we can hope for against G' and Hyyop is (¢|G|p) = 0 and (| H,op|¢) = 0.
The question is: Can we attain zero for both expressions simultaneously, i.e. do G and Hf)rop
share a common null vector? Unfortunately, the answer is no.

Exercise 6.54. Show that Null(H,,,) = Bna ® Bp(n)z ® Bq(n)s @ |7)p.

Exercise 6.55. Show that Null(G) is the direct sum of 3 orthogonal spaces, i.e. Null(G) =
Nl D NQ D N2 for

Ny = Bna® Bp(n)z @ Bq(n), @ Span(|1),...,|m —1))p
N3 = {|n) | V|n) has qubit C1 set to [1)} 4 p o ® [m)p

Exercise 6.56. Conclude that Null(H/) N Null(G) = (), as claimed.

prop

We thus have that for any choice of |$), at most one of (#|G|¢) and (¢|Hj,.,|¢) can be
zero; thus minimizing (¢|G|¢) + (#|H},op|#) is a balancing act between “not upsetting” either
G or HI’)rop too much. Intuitively, the “minimum joint unhappiness” experienced by G and

Hj,,, relative to a state |¢) should depend on “how close” their null spaces are — if there
is a |¢) that is “close” to both Null(G) and Null(H},,,), then we might expect to minimize

(91G|®) + (P Hprop|@) “well”. Conversely, if Null(G) and Null(H],,,) are “far”, then we might
expect Amin(G + Hy,p,) to be “large”. This is precisely the intuition captured by the Geometric

Lemma (whose proof uses elementary Linear Algebra, and which we omit for brevity).

Lemma 6.57 (Geometric Lemma). Let Ay, As = 0, and let v lower bound the minimum non-
zero eigenvalues of both A1 and As. Then,

, Z(Null(A;), Null(As))

)\min(Al + AQ) > 2usin 5 s

where the angle between spaces X and) is defined as Z(X,)) := arccos | max 2) X, [y) €Y (|| -
Iz} lla=Illy) [l,=1

Thus, the correct notion of “closeness” for Null(G) and Null(Hj,,,,) is the angle between the
two spaces.

73

Exercise 6.58. Suppose Null(A;) N Null(Asg) # (. Why is the lower bound given by the Geo-
metric Lemma trivial in this case, and why is this expected?

We now have a clear approach for trying to show Anin(G + H{,rop) > [— apply the
Geometric Lemma with A1 = G and Ay = H},,. It just remains to figure out v and
Z(Null(G), Null(H},,,,,))-

Exercise 6.59. Prove that the smallest non-zero eigenvalue of G is 1. (Hint: Recall Hj, and
Hoyyt are commuting projectors.)

Exercise 6.60. Use the formula for the eigenvalues of A to show that the smallest non-zero
eigenvalue of H}, . is 2(1 — cos(w/(m +1))) > 7*/(m + 1)®. (Hint: Taylor series.)

rop

By the two exercises above, we may set v = 72/(m + 1)2. The next lemma suffices to finish
the proof of Lemma

Lemma 6.61. It holds that
Z(Null(G), Null(H/,,)) 1— /e

. IO
sin? PIop~~ >

2 4(m+1)

2

Proof. Since sin? x = 1 — cos? z, it suffices to show the bound

1—/e
2
cos® Z(Null(G), Null(Hpy,p)) < 1- V5. (6.2)

Exercise 6.62. Prove that Lemma follows from Equation (6.2]).

To show Equation (6.2), we must upper bound

max zly)? = max (Yle)(zly) =~ max (y|Ixuya)ly),
|z) eENull(G),|y) ENull(H},op) |z} eENull(G),|y) eENull(Hpop) ly)eNull(H,0p)
) o=l 1y [l;=1) o=l 1y [l=1 [Hy) ll=1

for Iy the projector onto a space X'. Since Null(G) = N1 @ Na @ N3, we may write Iyyq) =
IIn, + Iy, + II,. Handling Iy, can be done directly.
m—1

Exercise 6.63. Prove that maX\y>eNull(ngop)<y‘HNz‘y> =T

y) la=1

To next relate our bound to €, which encodes the probability of acceptance, we must consider
I, +11n; jointly. Defining X := [2) a®Bp(n) p®[0- - 0)c and Y := {|n) | V|n) has qubit C1 set to 1)}, g ¢,
and recalling that any |y) € Null(Hpyop) has form 1) 4 ,c ® |7)p, we have

(ML, + Ty) = (41T @ [0} (0 + Ty ©)l p)ly) = —— (9l(ILx + Ty

In other words, maximizing the left hand side has been reduced to upper bounding Apax(ITy +
I1y). Luckily, the main statement derived in the proof of the Geometric Lemma (which, recall,
we’ve omitted) gives us exactly the requisite tool for this.

Fact 6.64. For spaces A and B, Amax(IT4 +1I5) < 1+ cos(Z(A, B)).

74

Exercise 6.65. Use Fact [6.64] to prove that cos?(/(X,))) < e. Conclude that (y|[Tly, +

1+
T, |y) < TEVE.

Exercise 6.66. Combine the bounds we have computed to conclude that Equation (6.2)) holds,

thus completing the proof of Lemma O
Exercise 6.67. Combine our choice of v and Lemma [6.61] to obtain Lemma
O

75

7 Quantum-Classical Merlin Arthur (QCMA)
and Ground State Connectivity

“I have called this principle, by which each slight variation, if useful, is preserved,
by the term of Natural Selection.”
— Charles Darwin

Introduction. In Lecture 5, we introduced Quantum Merlin Arthur (QMA) as the de facto
quantum generalization of NP, which verified a quantum proof |¢) with a quantum verifier. It is
not clear at all, however, whether a quantum proof is required to capture the full power of QMA.
For even though an arbitrary quantum proof [¢)) € Bn can be a “complicated” quantum state,
a QMA verifier is restricted to be a polynomial-size quantum circuit. Can such a limited verifier
even “distinguish” between “complicated” proofs |¢) and “simpler” approximations |1} thereof
(where by “simpler” we roughly mean that unlike [¢), |¢) has a succinct classical description)?
In other words, is a classical proof as good as a quantum one for the purposes of polynomial-time
quantum verification?

In this lecture, we explore this question via the complexity class QCMA, which is QMA but
with a classical proof. Whereas QCMA C QMA holds trivially, it is not at all clear whether the
reverse containment should hold. In other words, in line with the opening quote of this lecture,
we do not yet know whether the “variation” of allowing proofs to be quantum yields something
“useful” (meaning more verification power). In this sense, “Natural Selection” is yet to play its
hand in the study of “quantum NP”.

This lecture is organized as follows. We begin in Section by defining QCMA. Section
studies the QCMA-complete problem of Ground State Connectivity, which gives some insight
into the types of classical proofs which may be useful to quantum verifiers. The proof of
QCMA-completeness (Section will again utilize the history state construction of the
previous lecture, and its soundness analysis requires a tool known as the Traversal Lemma
(Section [7.2.1]). The tightness of this lemma is discussed in the closing section of this lecture,
Section [.2.11

7.1 Quantum-Classical Merlin Arthur (QCMA)

Sandwiched between PromiseMA and QMA is QCMA (more accurately, PromiseQCMA) (i.e.
PromiseMA C QCMA C QMA), a natural complexity class which is arguably less well-
understood than QMA. We begin with the definition of QCMA.

Definition 7.1 (Quantum-Classical Merlin Arthur (QCMA)). A promise problem A = (Ayes, Ano, Ainv)
is in QCMA if there exists a P-uniform quantum circuit family {Q.} and polynomials p,q : N —
N satisfying the following properties. For any input x € {0,1}", Q, takes in n + p(n) + q(n)
qubits as input, consisting of the input x on register A, p(n) qubits initialized to a “classical
proof” |y) € {0, 13" on register B, and q(n) ancilla qubits initialized to |0) on register C. The

76

first qubit of register C, denoted C, is the designated output qubit, a measurement of which in
the standard basis after applying Q,, yields the following:

e (Completeness/YES case) If x € Ayes, there exists proof y € {0,1}p(n), such that Qn
accepts with probability at least 2/3.

e (Soundness/NO case) If x € Ayo, then for all proofs y € {0,1}73(”), Qn accepts with
probability at most 1/3.

e (Invalid case) If x € Ainy, Qn may accept or reject arbitrarily.
Exercise 7.2. What is the only difference between QMA and QCMA?

As with BQP and QMA, the completeness and soundness errors can be made exponentially
small via parallel repetition of the verification protocol and a majority vote. However, as with
PromiseMA, it turns out that without loss of generality, one may assume QCMA has perfect
completeness, i.e. in the YES case, there exists a proof y accepted with certainty. An analogous
statement for QMA remains an open question.

Exercise 7.3. For QMA, we distinguished between weak and strong error reduction. Why does
strong error reduction for QCMA hold trivially?

Exercise 7.4. Note that the proof register B in Definition [7.1]is expected to contain a standard
basis state |y) for y € {0, 1}p(”). Since @, is a quantum circuit, B is a register of p(n) qubits.
This means that in the NO case, a cheating prover can in principle send an arbitrary entangled
state |1) in register B. Why does this not ruin the soundness property of Definition (Hint:
Without loss of generality, we may assume that before running the actual verification, @Q,, makes
a certain measurement. Which measurement should @),, make, and how can @,, simulate this
measurement unitarily?)

7.2 Ground State Connectivity

We now study a physically motivated complete problem for QCMA, which gives some insight
into what type of classical proof might be useful to a quantum verifier. As with the Quan-
tum Cook-Levin theorem, the problem arises in the setting of ground space properties of local
Hamiltonians, H =), H;. In contrast to k-LH, however, we shift our attention away from
the ground state energy of H and to the structural properties of the ground space of H. For
inspiration, we look to the classical study of reconfiguration problems.

Reconfiguration problems. Given a 3-SAT formula ¢ : {0,1}" — {0,1}, computing different
properties of ¢ can have different complexities. For example, we know from the Cook-Levin
theorem that deciding whether the solution space for ¢ is non-empty (i.e. does ¢ have a
satisfying assignment?) is NP-complete. If we instead wish to count the size of the solution
space (i.e. the number of satisfying assignments to ¢), this is much harder; it is #P-complete.
We may also ask about the structure of the solution space — for example, is it connected? This
turns out to be either in P, NP-complete or PSPACE-complete, depending on how the question
is phrased.

77

Let us formalize what we mean by “connected” (we state it using ket notation to highlight the
generalization to the quantum setting later). Given as input a Boolean formula ¢ : {0,1}"
{0,1}, two satisfying assignments z,y € {0,1}", and length parameter 1™ for m € N, we say
|x) and |y) are connected with respect to ¢ if there exists a sequence of length at most N < m
bit flips (Xi,, Xy, ..., Xiy) for i € [m] (where Pauli X; is applied to qubit) satisfying two
properties:

1. (Intermediate states are in solution space) For all k£ € [N] and intermediate states |zj) :=
Xiy - Xy |z), o(ag) = 1.

2. (Final state is target state) X, --- Xj, |2) = |y).

In other words, is there a sequence of at most m bit flips we can apply to map z to y, such that
each intermediate state attained is also a solution to ¢?

Exercise 7.5. Let ¢ = (x1 VT32) and x = 00 and y = 11. Are x and y connected with respect
to @7

Exercise 7.6. Give a Boolean formula ¢ (not necessarily in CNF form) and solutions z, y which
are not connected with respect to ¢.

It is important to note that the number of bit flips m needed for mapping = to y in this
manner need not be at most n; in fact, it can scale as O(2™). This is due to property 1 above;
the naive greedy sequence of bit flips mapping = to y might take us temporarily out of the
solution space. For this reason, if we drop the upper bound m in the input, the problem of
determining if a 3-SAT formula is connected is PSPACE-complete. In the formulation above
(i.e. with parameter m), however, the problem is NP-complete.

Exercise 7.7. Why is deciding if a 3-SAT formula is connected according to our definition
above in NP?

Reconfiguration in the quantum setting. By generalizing the reconfiguration problem for
3-SAT to the quantum setting, we arrive at the main problem to be studied in this section.
As before, we are interested in the structure of the solution space, where “solution space” now
refers to the ground space of a local Hamiltonian.

Definition 7.8 (Ground State Connectivity (GSCON)). Fiz an inverse polynomial A : N +—
RT.
e Input parameters:

1. k-local Hamiltonian H = Y, H; acting on n qubits with H; € Herm ((C*)®*) satis-
fying | Hi |l < 1.

2. Thresholds m1,m2,m3,m4 € R such that no —n1 > A and ng — n3 > A, and 1" for
m € N.

3. Polynomial size quantum circuits Uy and Uy generating “starting” and “target”
states 1) and |@) (starting from |0)®™), respectively, satisfying (W|H|p) < n1 and
(¢ H|¢) <.

o QOutput:

78

1. If there exists a sequence of 2-qubit unitaries (U;)7™, € U (Cz) “™ such that:

a) (Intermediate states remain in low energy space) For alli € [m] and intermediate

states |¢;) = U; - - - UaU1 W), one has (W;|H|p;) < n1, and
b) (Final state close to target state) ||Up, - - Ur|Y) — |d) |5 < 13,
then output YES.
2. If for all 2-qubit sequences of unitaries (U;)™, € U (Cz) “™either:

a) (Intermediate state obtains high energy) There exists i € [m| and an intermediate

state |;) = Uy --- UaU1 1)), such that (1;|H ;) > n2, or
b) (Final state far from target state) ||Up, - - Ur|Y) — |6) [|l4 > 14,
then output NO.

Intuition. Roughly, GSCON says: Given two ground statesﬂ |1) and |¢) of a k-local Hamiltonian
H, are |[¢) and |¢) connected through the ground space of H? In other words, is there a sequence
of 2-qubit gates mapping |1) to |¢), such that all intermediate states encountered are also ground
states? This turns out to have an important physical motivation in the quantum setting — it
asks whether the ground space of H has an energy barrier preventing one ground state from
being mapped to another via short circuits (while remaining in the low energy space throughout
the computation).

7.2.1 QCMA-completeness of GSCON

Theorem 7.9. There exists a polynomial r such that GSCON is QCMA-complete for m €
O(r(n)) and k > 7, where n denotes the number of qubits H acts on.

Proof. For brevity, we sketch containment in QCMA. We give a full proof of QCMA-hardness.

Containment in QCMA. Containment in QCMA holds for any m € O(poly(n)), and is intu-
itively straightforward (hence we only sketch it here) — the prover sendsﬂ a classical description
of the polynomially many 2-qubit gates Uy, ..., Uy, to the verifier as a proof. Since the verifier
can prepare both the start and final states |¢)) and |¢) efficiently via U, and Uy (also given
as input), it can check the energy of each intermediate state |¢;) against H using the protocol
from the proof of the Cook-Levin theorem. Finally, to check if |1),,) = |¢), the verifier prepares
both states and applies the SWAP test, which we now briefly discuss, as it is a useful tool to
have in one’s toolkit.

Swap test. Given physical copies of states |¢)) and |¢), can we efficiently test if [1)) = |¢)? The
answer is yes, and goes via the SWAP test, pictured in Figure [7.1] This test outputs 0 with
probability (1 + |(¥|¢)|*)/2, thus allowing us to estimate || 1)) — |¢) |-

'More accurately, the definition of GSCON discusses low-energy states, which need not be ground states.
However, by using the fact that QCMA satisfies perfect completeness without loss of generality, one can show
QCMA-completeness of GSCON even when all states involved are ground states of H.

2More accurately, since arbitrary 2-qubit gates cannot be specified exactly to finite precision, the prover sends
elements from an appropriate notion of an “e-net” over 2-qubit unitaries.

79

10)
p) ————
¢) ————

SWAP

Figure 7.1: The circuit for the SWAP test. The SWAP gate has action |z)|y) — |y)|z) for any
standard basis states |x),|y). Note the inputs |¢)) and |¢) are in tensor product.
The “output” is the measurement result on the first wire.

QCMA-hardness. Let A = (Ayes, Ano, Ainy) denote a QCMA promise problem. Let z € {0,1}"
be an input, with corresponding QCMA verifier V = Vy --- Vi € B* @ BP(™ @ B4 Recall V
is a uniformly generated quantum verification circuit consisting of 1- and 2-qubit unitary gates,
acting on registers A (n qubits containing the input z), B (p(n) qubits containing the proof
|1)), and C (g(n) ancilla qubits initialized to all zeroes). We make two assumptions about V'
without loss of generality: (1) The completeness and soundness parameters for V' are 1 — e and
€, so that 1 —2e € Q(1/poly(n)), and (2) V begins by measuring its proof in the standard basis
(this trick was alluded to in a previous exercise; it forces a cheating prover to send a classical
proof, and can be simulated unitarily via the principle of deferred measurement). Our goal is
to construct an instance (H,nq,n2,13 04, m, Uy, Uy) with 7-local Hamiltonian H such that, if
x € Ayes, then there exists a sequence Uy, ..., Uy, of 2-qubit gates mapping |¢) to |¢) through
the low energy space of H, and if x € A, then any such unitary sequence must either leave
the low-energy space of H at some point or map [¢) “far” from |¢).

The construction. We now state the construction, which at first glance does not seem to do
anything interesting. The YES case in the correctness analysis will reveal the intuition as to
why this works.

Let HC denote the 5-local Hamiltonian obtained from V the Quantum Cook-Levin Theo-
rem’s circuit-to-Hamiltonian construction. We define H to act on a Hamiltonian register de-
noted h (consisting of subregisters A, B, C', and D, where D is the unary-encoded clock register)

and 3-qubit GO register denoted G. Specifically, H € Herm <(C2)§(n+p(n)+q(n)+m ® ((CQ)%?’) .

Exercise 7.10. What are the NV qubits in the h register used for? Why are there N of them?

Define
H = H,?L ® Pa for P :=1—1000)(000| —|111)(111]. (7.1)

Exercise 7.11. Note that P as written is 3-local. Show how to write P equivalently as a 2-local
Hamiltonian.

By the exercise above, we have that H is 7-local. Define the initial and final states as

W> — ’0>®(n+p(n)+q(n)+N)‘O>®3 and ’¢> — ‘0>®(n+p(n)+q(n)+N)‘1>®37 (7.2)

which have trivial poly-size preparation circuits Uy and Uyg. Finally, let W denote a unitary
circuit of size |WW| which prepares the history state of H given classical proof y. Define m :=
2(p(n) + W] +1).

80

To complete the construction, set n3 = 0, 74 = 1/4, m = «, and 12 = 3/(16m?), where o :=
¢/(N 4+ 1) and B := 72(1 — /€)/(2(N + 1)3) come from the Quantum Cook-Levin theorem’s
circuit-to-Hamiltonian construction. Note that if we apply weak error reduction to V' so that e
is exponentially close to zero, then the gap A € Q(1/N?).

Correctness for YES case. Suppose x € Ay, i.e. there exists a proof y € {0, 1}p(") accepted
by V. We demonstrate a sequence (U;)™; of 2-qubit unitaries mapping |¢) to |¢) through the
ground space of H.

Intuition. To see the intuition, we first need an exercise.

Exercise 7.12. Prove that |¢) and |¢) lie in the null space of H, i.e. H|¢) = H|¢p). Use the
fact that H" = 0 to conclude that |¢)) and |¢) hence lie in the ground space of H, and in
particular have energy at most a.

Thus, |1) and |¢) both lie in the null space of H, and are identical except for the pesky 3 qubits
in the GO register, which are set to |000) and |111), respectively. To map |¢)) to |¢) via 2-local
gates, the obvious idea is hence to flip the GO qubits from 000 to 111. The problem is that we
cannot flip more than two qubits at a time — so after flipping (say) the first two GO qubits, the
G register reads |110), and now we are in the support of Pg in the definition of H. This means
that HC" is now “turned on” and checks the h register for a history state. Since we are in the
YES case, there is a good history state we can use, and moreover, since we are dealing with
QCMA, this history state can be prepared from the all zeroes initial state via a polynomial-size
(though not necessarily P-uniformly generated) circuit.

Exercise 7.13. Given a classical proof y € {0, 1}” (”), give a polynomial-size sequence of 2-qubit
gates which maps the all-zeroes state to the history state |¢p;st) in time polynomial in n. Why
does this not necessarily work for QMA, i.e. given a copy of a quantum proof |) € Bp(n) in
place of y?

The honest prover’s actions. Recall the h register is broken up into four subregisters, A (input),
B (proof), C' (ancilla), and D (clock). The sequence of 2-qubit gates (U;)™, is as follows:

1. Apply Pauli X gates to hp to prepare classical proof g, i.e., map |[0)®P(™) to |y).
2. Apply W to h to prepare the history state |hist,) of HCL.

3. Apply (X ® X ® I)¢ to “initiate” checking of |hist,).

4. Apply (I ® I ® X)g to “complete” checking of |hist,).

5. Apply Wt to h to uncompute hist,).

6. Apply X gates to hp to map the initial proof |y) back to |0)®P("),

Exercise 7.14. Why is the length of the sequence above at most m = 2(p(n) + |W| + 1), as
desired?

Exercise 7.15. Verify that the sequence (U;) correctly maps [1) to |¢).

81

Exercise 7.16. As in Definition 7.8} recall the ith intermediate state is defined |¢;) := U, - - - Uy |).
There is precise only one i € [6] above such that |¢;) is not in the null space of H — which i is
this? Prove that for this ¢, (¢;|H|1;) < n1, as desired.

Proof of correctness for NO case. Suppose = € A,,, i.e. all proofs y € {0, l}p(") are rejected
by V with probability at least 1 — e. Intuitively, we cannot proceed as in the YES case now
because HCY does not have a low-energy history state (indeed, all its eigenvalues are at least
B). Thus, the moment we “switch on” the H" check in Step 3, we are in trouble. The only
way a cheating prover can try to bypass this problem is to somehow try to switch all GO
qubits from 000 to 111 without having significant support on the orthogonal space spanned by
{]001),]010), |011), |100), |101), |110)}; note that this statement is non-trivial because the prover
is not restricted to simply performing Pauli X gates. Thus, our main task for the NO case is
to prove that this is impossible. The main tool for this is the following lemma, whose proof is

given in Section [7.2.1]

Lemma 7.17 (Traversal Lemma). Let S,T C Bn be k-orthogonal subspaces. Fiz arbitrary
states |v) € S and |w) € T, and consider a sequence of k-qubit unitaries (U;)[*, such that

Hw) = U -~ Urlo) [l < 6

for some 0 < § < 1/2. Define |v;) := U;---Uilv) and P := I —Ilg — Ilp. Then, there exists

i € [m] such that
1-20\?
2m

Intuitively, this lemma says basically what we are looking for — that for certain types of
subspaces S and T', any local unitary mapping from S to T" must at some point “leave” S @ T.
The “type” of subspaces this applies to are defined next.

Definition 7.18 (k-orthogonal states and subspaces). Fork > 1, a pair of states |v), |w) € (C%)®"
is k-orthogonal if for all k-qubit unitaries U, we have (w|U|v) = 0. We call subspaces S,T C Bn
k-orthogonal if any pair of vectors |v) € S and |w) € T are k-orthogonal.

Exercise 7.19. Prove that |[000) and |111) are 2-orthogonal. Are they 3-orthogonal?

We can now complete the proof of correctness for the NO case. We know the smallest
eigenvalue of " is at least 3. Let S and T denote the +1 eigenspaces of Ij, ® [000)(000|, and
I, ® |111)(111| s, respectively.

Exercise 7.20. Characterize S and 7.
Exercise 7.21. Show that S and T are 2-orthogonal subspaces, and that |¢)) € S and |¢) € T.
By the exercises above, for any sequence of two-qubit unitaries (U;)",, either || [y,) — |@) || >

1/4 = n4 (in which case we have a NO instance of GSCON and we are done), or we can apply
the Traversal Lemma (Lemma [7.17) with § = 1/4 to conclude that there exists an i € [m] such

that
1\>
(Wil P) > () _m®

4dm

82

where recall |¢;) := U; -+ - Up|¢)) and we define P =T —Ilg — Il = I}, ® P. We conclude that

(Wil H|s) = (Wi HY @ Pluy) > Blwi| I, @ Pli) = B | P'[wi) > ma,

where the first inequality follows since H" > BI.

Proof of Traversal Lemma

To conclude the proof of Theorem it remains to show the Traversal Lemma, which we
reproduce below for convenience.

Lemma Let S,T C Bn be k-orthogonal subspaces. Fix arbitrary states |v) € S and
|lw) € T', and consider a sequence of k-qubit unitaries (U;)I", such that

Hw) = U -~ Uilo) [l <6

for some 0 < § < 1/2. Define |v;) := U;---Uilv) and P := I —Ilg — Ilp. Then, there exists

i € [m] such that
1-20\?
2m

The proof of Lemma [7.17] requires the well-known “Gentle Measurement Lemma”, which quan-
tifies an intuitively expected behavior: If a measurement outcome II has high probability of
occurring for state p, then we expect the postmeasurement state (proportional to) IIpll to be
approximately p (i.e. the measurement should not disturb the state much). We state this lemma
below first, and then prove Lemma

Lemma 7.22 (Gentle Measurement Lemma). Let p € L (C?) be a density operator and O =
II <X I a projective measurement operator for Il € L ((Cd), such that Tr(Ilp) > 1 — €. Then,

| p— TpT |, < 2.

Note that IIpIl above is not necessarily normalized.

Proof of Lemma[7.17. We give a proof by contradiction. Suppose that for all i € [m], the ex-
pectations satisfy (v;|P|v;) < & := [(1—268)/(2m)]?. Consider the following thought experiment
inspired by the quantum Zeno effectﬂ Imagine that after each U; is applied, we measure |v;)
using the projective measurement (II, I —II) for IT := I — P, and postselect on obtaining outcome
II. Define the following two sequences:

e |v]) :=IIJv;) for i € [m],
o |vf) :=|v}) and |v)) =TI U;|v)_ ;) for i € {2,...,m}.

Note that |v}) and |v]') are not necessarily normalized.
To set up our contradiction, we first prove by induction on i that

[i) (vil = o)], < 20/, (7.3)

For the base case i = 1, we have |[v]) = |v]). Then, since (vi|PJv1) < Kk, we know that
Tr(II|vy)(v1]) > 1 — k.

3Roughly, the quantum Zeno effect is the phenomenon that a quantum system which is continuously observed
never evolves.

83

Exercise 7.23. Use the Gentle Measurement Lemma (Lemma [7.22)) to conclude

[o) (wr] = o) (01][], < 2V, (7.4)

as required for the base case.

For the inductive case, assume Equation ((7.3) holds for 1 < i < j — 1. We prove it holds for
i = j. Specifically,

[Tog)(wsl = WG, < (i) o] =) (gl + [105 Cojl = o)i T,
2v/k + || o) | = [l

2V + H TU; (Jvj-1) (vj-1| = [of_1) (w] 1 [) UJTT
2V + || 107-1) (vj—1] — 7)o |,
2VE+2(j — 1)Vk

2R, (7.5)

where the first statement follows from the triangle inequality, the second from the Gentle Mea-
surement Lemma, the fourth from the facts that the Schatten p-norms are invariant under
isometries and that || ABC'||, < || A[|| Bl, || C |ls, and the fifth from the induction hypoth-
esis. This establishes Equality .

A

tr

IN

AN

Exercise 7.24. Use the fact that || [v)(v| — |w)(w]| ||, < 2| |v) — |w) ||, for unit vectors |v), |w)
to conclude that
|| o) (in| = Tw)(wl [, < 1, (7.6)

We are now ready to obtain the desired contradiction. To do so, observe that since |v) € S,
and since S and T are k-orthogonal subspaces, we have that for all ¢ € [m], [v]) € S (i.e., if S
is 1-dimensional, this is the Zeno effect). Thus, we have (v, |w) = 0, implying that

[Hom) (vl = [w){wl | = 1+ [lom) |, = 1.

This contradicts Equation ([7.6]), as desired. O

Tightness of the Traversal Lemma

The proof of QCMA-completeness of GSCON relied crucially on the Traversal Lemma, and
so it is natural to ask whether the lemma is tight. Namely, in Lemma the lower bound
on (v;|P|v;) scales as ©(1/m?) (for m the number of unitaries and for fixed §). This suggests
that one can better “avoid” the subspace P projects onto if one uses a longer sequence of local
unitaries. Indeed, it turns out that, at least in some cases, this behavior is possible; thus, a
dependence on m is necessary in Lemma

Theorem 7.25. We assume the notation of Lemma . Fiz any 0 < A < 1/2, and consider
2-orthogonal states |v) = 000) and |w) = |[111), with P := I — |v){v| — |w){w|. Then, there
exists a sequence of m 2-local unitary operations mapping |v) to |w) through intermediate states
|v;), each of which satisfy (vi|Plv;) < A, and where m € O(1/A?).

84

Proof intuition. We omit the proof for brevity, but the idea behind it is based on the following
rough analogy: Suppose one wishes to map the point (1,1) (corresponding to |000)) in the 2D
Euclidean plane to (—1, —1) (corresponding to |111)) via a sequence of moves with the following
two restrictions: (1) For each current point (x,¥), the next move must leave precisely one of x
or y invariant (analogous to 2-local unitaries acting on a 3-qubit state), and (2) the Euclidean
distance between (x,y) and the line through (1,1) and (=1, —1) never exceeds A (analogous to
the overlap with P not exceeding A). In other words, we wish to stay close to a diagonal line
while making only horizontal and vertical moves. This can be achieved by making a sequence of
“small” moves resembling a “staircase”. The smaller the size of each “step” in the staircase, the
better we approximate the line, at the expense of requiring more moves (analogous to increasing
the number of unitaries, m). This is the basic premise behind the proof of Theorem —
giving a formal proof takes some work, as the back-and-forth shuffling of amplitude with the
application of each local gate U; needs to be carefully managed.

85

8 Quantum Interactive Proofs (QIP),
semidefinite programs, and multiplicative
weights

“There is one thing stronger than all the armies in the world, and that is an idea
whose time has come.”
— Victor Hugo

Introduction. In this course, we have considered the power of quantum verification systems in
the presence of various types of communication: No communication (BQP), one-way classical
communication (QCMA), and one-way quantum communication (QMA). A natural extension
of these studies is to ask: What happens when the communication is interactive, i.e. back and
forth between the prover and verifier? This is roughly the class QIP, and the high-level aim of
this lecture is to study the result that QIP = PSPACE.

Along the way, we will encounter two elegant ideas which have found surprisingly fruitful uses
in quantum information (as the opening quote of this section suggests, it is these ideas whose
“time has come”). The first is the notion of semidefinite programs (SDP), which are a fairly
broad class of optimization problems typically solvable in polynomial-time, and which have
become rather ubiquitous in quantum information. The second is the multiplicative weights
(MW) method, which in some sense is the oldest trick in the book in terms of how humans
handle unpredictable situations (at least according to the present instructor). Remarkably,
both these tools come together to prove that polynomially many messages of interaction with
a quantum verifier yields precisely PSPACE.

Organization. We begin in Section with the multiplicative weights algorithm; while the
context we present it in is unrelated to QIP, our discussion will nevertheless hopefully give you an
intuition as to how the method arises. Section then introduces quantum interactive proofs,
semidefinite programs, and how the former can be phrased in terms of the latter. Section
finally gives the proof combining all the previous ingredients to show that QIP = PSPACE. We
stress that this lecture is full of deep and fundamental ideas and tools; the MW method, SDPs,
and interactive proofs alone can each fill many lectures many times over.

8.1 The Multiplicative Weights algorithm

In a nutshell, the Multiplicative Weights (MW) algorithm captures the age-old idea that “if it
worked once, it’s likely to work again”. Typically, the algorithm is introduced in the context
of the stock market and stock advisors, but let us focus here on a more troublesome bunch:
Professors. Suppose you are a first-year student entering a Computer Science program at your
university, and at a loss as to which of many advanced courses to choose. Confused, you assemble
an A-team of professors, labelled 1 through n, to guide you through this process. In your first
semester, you ask: “Professors, professors, heed my call, which is the fairest course of them

86

all?” Each professor gives you an answer; but since you're new to the school, you have no idea
whose advice to take. So in round 1, you pick some professor i; € [n] uniformly at random, and
follow his/her advice. Once the semester is over, you reflect: Was Professor i’s advice good or
bad? If the advice was good, then once semester 2 starts and you repeat this process, you will
naturally be more likely to follow Professor i’s advice again. The question is: How should you
update your probability of following Professor i’s advice at the end of each semester? It turns
out the right answer is “multiplicatively”, and this is precisely where MW gets its name.

Formal setup and algorithm. Imagine we have a set F of n experts, and T rounds of some
process for which we wish to take the experts’ advice into account. In each round ¢ € [T], we
have a probability distribution p' over E, such that we pick and follow (only) E;’s advice in
round ¢ with probability pf. We imagine that the environment now assigns a “cost” to each
expert i’s choice in round ¢, denoted —1 < ¢! < 1. Absolutely no assumptions are made on how
these costs are set by the environment; they may even be set adversarially.

The MW algorithm is an online algorithm, meaning it tries to make the best choices at each
step without access to future environmental data (i.e. costs ¢! for future rounds t). Ideally, the
goal would be to pick the “best expert” from the beginning, i.e. the one attaining minimum

cost
T
. t
min E C,
i€[n] P

and follow this expert in each round. This is naturally impossible, but remarkably we can get
“close” to OPTy, even if the environment acts adversarially. To formalize this, let ¢! € [—1,1]"
and p' € [0,1]" denote the vectors encoding the cost and probability for all experts in a round
t. (Thus, the odds of picking expert ¢ in round ¢ are pt € [0,1], and the cost of doing so is
ct € [-1,1].) The expected cost of using distribution p’ in round ¢ is hence

n
Cy = prcf = <ct7pt> 3
=1

for (a, b) the inner product of @ and b. The expected cost over all rounds is thus C' := Ethl Cy =
Zthl (c',p"). Before stating the algorithm, let us state what it gives us.

Theorem 8.1. Fiz 0 < € < 1/2. Then, for any expert E;, after T' rounds the MW algorithm

obtains expected cost
T
C<> d+
t=1

Remarks. We stress that the right hand side of the bound above holds for any expert E;; thus,
the MW algorithm is “close” to the best expert in terms of performance. The term in square
brackets is the additive error term; it depends on the magnitude of the costs ‘cﬂ incurred by E;.

0 4 o
62'6‘—{— .

t=

T
()
1

The algorithm itself is now stated as Algorithm [1] (yes, it really is this simple).

Exercise 8.2. Why is there a division involved in Step 2(a) of Algorithm

Proof of Theorem[8.1. As done in amortized analysis, it turns out to be useful to study a
“potential function” as a “reference point”: ®' := >~ w!. By giving upper and lower bounds

on ¢, we will obtain the claim.

87

Algorithm 1 The Multiplicative Weights algorithm.

1. Fix 0 < € < 1/2, and give each expert E; “weight” w} = 1.

2. Fort=1,...,T:
a) Pick expert E; with probability w!/(>", w!) = wf/®".
b) Obtain costs ¢! for round ¢ from the environment.

. {wm St itd >0

c) Update weight of expert F; as w;" " := w1+ 6)_62 if of < 0

Upper bound. By definition,
Pl — Zw;&l < wa(l _ ecf) _ <I>t(1 e <ct,pt>) < <I>te_€<ctvpt>7
i i

where the first inequality follows from the next exercise.

Exercise 8.3. Prove that (1 F €)™ < (1 — ex) when x € [~1,1] and = € [—1,0], respectively.
Use these facts to obtain the first inequality above.

Exercise 8.4. Use the fact that p! = w!/®" to show the second equality above.

Exercise 8.5. Prove that e > 1 — x for x € [—1,1]. Use this to prove that last inequality
above. (Hint: You need to use an assumption we made on the costs ct.)

Since by definition ®! := n, it follows that after T steps, ®7t! < ne™© ZtT:1<ct’pt>, our desired
upper bound.

Lower bound. Since the weights w! > 0, we have that for any FE;, ®'™! > wf“. Combining
the upper bound above with the following exercise now yields the claim.

Exercise 8.6. Prove that for 0 < e <1/2,In(1/(1 —¢)) < e+ ¢ and In(1 +€) > € — €2

Exercise 8.7. Use the exercise above to prove that In(w!"!) > —e>", cf — €23, ‘cﬂ Combine
this with our upper bound to obtain the claim.]

This completes our discussion of the basic MW method. For a gentle introduction to its
extension to the matrix setting, the reader is referred to the thesis of Kale, available at http:
//www.satyenkale.com/papers/thesis.pdf. In the interest of time, we shall instead jump
right into QIP and semidefinite programs.

8.2 QIP and semidefinite programs

Ultimately, our goal is to use a matrix variant of the MW algorithm to show that QIP =
PSPACE. To do so, we first require a definition of quantum interactive proofs, and subsequently
an approach for embedding their maximum acceptance probability into a semidefinite program.

These are given in Sections and respectively.

88

http://www.satyenkale.com/papers/thesis.pdf
http://www.satyenkale.com/papers/thesis.pdf

8.2.1 Quantum interactive proofs

Roughly, classical interactive proofs are the natural extension of NP to the setting in which
the prover (which remains computationally unbounded) can now exchange polynomially many
rounds of communication with the verifier (which remains polynomially bounded). Quantumly,
the idea is analogous: The quantum prover (which remains computationally unbounded, with
the exception of obeying the laws of quantum mechanics) now exchanges polynomially many
rounds of quantum communiction with the verifier (which is still computationally bounded).
Slightly more formally, we imagine the prover and verifier send a common quantum “message
register” M back and forth, and each take turns applying a local unitary circuit on M and their
private workspace.

Formal definition. To make this intuition formal, we must generalize our definition of a QMA
verifier to an m-round quantum verifier (and analogously, an m-round quantum prover).

Definition 8.8. (m-round quantum verifier) An m-round quantum verifier is a P-uniform
circuit family Q@ = {Qn1,...Qum}, acting on three registers: An input register A containing
x € {0,1}", a message register M consisting of p(n) qubits, and an ancilla or “private” register
V' consisting of q(n) qubits, for some polynomials p,q : N — N. We imagine the verifier acts
in “rounds”, applying circuit Qn; in round i € [m]. Before round 1, the message and private
registers are initialized to all zeroes.

Definition 8.9. (m-round quantum prover) An m-round quantum prover is defined identically
to an m-round verifier, except the circuit family Q@ = {Qn1,-..Qnm} need not be P-uniform
(indeed, the circuits can in be superpolynomial in size). To help distinguish between verifier and
prover, for the latter we label the private register as P for “prover” (versus V' for “verifier”).

Exercise 8.10. Why does dropping the P-uniformity condition in Definition capture the
notion of a prover which is limited only by the laws of quantum mechanics?

For brevity, we henceforth drop the input size n when referring to circuits @, ;. We can now
model an interactive protocol between an m-round verifier and m-round prover in the natural
way: Letting {Q;} and {R;} denote their respective circuits, the interaction is given by (for
simplicity, we omit the A register, as we may assume without loss of generality that its contents
remain fixed to the input x for both parties):

(Qm)v.na (B)ag,p -+ (Qu) v (Ra)a,p|0-- - 0)y [0 0)ar]0 - - - 0) p.
Just as in QMA, the verifier now measures a designated output qubit of register V, say V1, and

accepts if and only if the output is 1.

Exercise 8.11. Suppose we wish the interactive protocol to instead begin with a message from
the verifier to the prover; how can we model that in the setup above?

Exercise 8.12. Why can we assume without loss of generality that the verifier acts last?

We may now formally define the class QIP.

Definition 8.13. (Quantum Interactive Proof Systems (QIP)) A promise problem A = (Ayes, Ano, Ainv)
is in QIP if there exists a polynomial m : N — N and m-round quantum verifier satisfying the
following for any input x € {0,1}":

89

o (Completeness/YES case) If x € Ayes, there exists an m-round quantum prover causing
the verifier to accept with probability at least 2/3.

e (Soundness/NO case) If © € Ay, then for all m-round quantum provers, the verifier
accepts with probability at most 1/3.

e (Invalid case) If x € Ay, the verifier may accept or reject arbitrarily.

Magic: Only a constant number of rounds are needed. Remarkably, and in strong contrast
to classical interactive proofs, it turns out quantumly that the use of polynomially many rounds
of communication in QIP is overkill — it suffices to use just 2 rounds:

(Q2)v,m (R2)a,p(Q1) v, (R1)ar,p[0---0)y [0+ 0)ar|0- - - 0) p.

In fact, we may even assume the only message from the verifier to the prover (modelled by (1)
is an unbiased coin flip (i.e. not conditioned on the action of R;). This is known as a “Quantum
Arthur-Merlin” game, and in the context of QIP, we may assume the accompanying complete-
ness and soundness parameters are 1 and 1/2 + € for any fixed € > 0, respectively. For the
remainder of this lecture, we shall henceforth use this Quantum Arthur-Merlin characterization
of QIP.

Exercise 8.14. Since ()1 above is just an unbiased coin flip independent of Ry, at first glance
it may seem one can simply remove R; altogether. Why might this be a bad idea?

8.2.2 Semidefinite programming

Linear programming and its generalization, semidefinite programming, are both misnomers:
Neither of them has anything to do “programming” in the usual computer science sense. Both
actually refer to a fairly broad class of optimization problems with a wide variety of applications.
Generally, a linear program (LP) attempts to maximize a given linear function f : R"™ —
R, subject to a set of given linear inequality constraints. The main syntactic difference in
generalizing from an LP to a semidefinite program (SDP) is that now the variables are not
vectors in R™, but Hermitian matrices in £(C™), and hence the correct notion of inequality is
the generalized inequality > denoting the positive semidefinite ordering (i.e. A = B if and only
if A — B is positive semidefinite).

Exercise 8.15. Is I = 21?7 How about I > X for Pauli X? I = 2X? If A>= Band C = D, is
A+C =B+ D?

Exercise 8.16. If A > 0 and B > 0, is it always true that AB > 07 (Hint: A necessary
condition for AB to be positive semidefinite is for it to be Hermitian.)

Standard form for SDPs. We begin by stating the standard form for SDPs we shall use.
To do so, we need three things: (1) A cost matriz C' € Herm (() X), (2) a constraint matriz
D € Herm (() Y), and (3) a linear constraint map ¥ : Herm (() X') — Herm (() V). Here, X and
Y are fixed complex vector spaces. The (primal) semidefinite program is then given by:

90

Primal problem (P) Dual problem (D)

supremum: Tr(CX) infimum: Tr(DY)
subject to: ¥(X) <X D, subject to: ¥*(Y) = C,
X =0, Y = 0.

This may look cryptic at first sight, so let us first break down some facts about the primal
problem, P:

e The variable being optimized over is X € Herm (() X'). The feasible region is the set of
all “valid assignments”, i.e. all X satisfying the given constraints, ¥(X) < D and X > 0.

e The objective function being maximized, Tr(CX), is linear in X. In analogy with Sec-
tion we may use inner product notation (C, X) := Tr(CTX) (recall C is Hermitian in
our setting).

Exercise 8.17. Prove that the objective function is indeed linear in X.

Exercise 8.18. The function (A, B) := Tr(A'B) is sometimes called the Hilbert-Schmidt
inner product for matrices. Why does this name make sense? (Hint: How is this function
really just an example of the usual vector inner product?)

e The map ¥ must be Hermiticity preserving, i.e. map Hermitian operators to Hermitian
operators.

Exercise 8.19. Why is the requirement that ¥ be Hermiticity preserving necessary?

e Once an SDP is in the standard form P above, one can formulate the corresponding dual
problem, D, which is also an SDP. We shall say more about duality shortly, but for now
let us define the adjoint map ¥* : Herm (() Y) — Herm (() X); it is the unique linear map
satisfying (A, ¥(B)) = (¥*(A), B) for all A € L(Y),B € L(X).

Exercise 8.20. Let U : L (C") — C be the trace function. What is ¥*?

The topic of semidefinite programming, and its generalization to convex optimization, fills up
entire textbooks. Here, we shall aim to convey the basic intuition and facts needed for studying
QIP via some examples and key statements.

Examples and optimal solutions. As with most things in life, you have actually been using
SDPs without knowing it. The simplest example of an SDP which you know is the computation
of the largest eigenvalue of a Hermitian matrix C' € Herm (() C"), which can be written:

Primal problem (P) Dual problem (D)
supremum: Tr(CX) infimum: vy
subject to: Tr(X) <1 subject to: y-1I = C,

X =0,

Exercise 8.21. What space does dual variable y live in?

91

Exercise 8.22. Technically, our standard definition of the dual problem required y > 0. How
can we rewrite D above to be in standard form? (Hint: Any a € R can be written a = b — ¢ for
some b,c > 0.)

Two comments: (1) It is not necessary to always put an SDP into standard form; this is
more for convenience, as it makes computation of the dual SDP easier. (Certain numerical SDP
solvers may also request it.) Generally speaking, an SDP is any optimization (min or max) of
a linear function, subject to linear inequality constraints and non-negativity constraints (with
respect to =). (2) The use of supremum in P above is unnecessary; in this case, the optimal
value is attained and is precisely Apax(C). More generally, however, this is not true, as the
following example demonstrates.

infimum: =«

subject to: <a: 1>t0
Iy

z,y €R

Exercise 8.23. Prove that z = 0 is not in the feasible region. Conclude that 0 as an objective
function value is not attainable. (Hint: Use the Determinant Test, which states for a 2 x 2
matrix that A > 0 if and only if Aj1, A > 0 and det(A) > 0.)

Exercise 8.24. Prove that for any x > 0, there exists a choice of y so that (z,y) is a feasible
solution to the dual problem. Conclude that the use of infimum is necessary in this example.

Duality theory. You may be wondering why we’ve been dragging around the dual problem
for each primal problem we’ve stated. Let p and d denote the optimal values for a primal and
corresponding dual SDP, respectively. These values satisfy an amazing property known as weak
duality:

p <d.

This immediately gives a powerful use for SDPs. Suppose you have some maximization problem
IT which is difficult to solve analytically (for example, this might encode the optimal cheating
probability for a cryptographic protocol). If you can formulate II (or a relaxation of it) as an
SDP, then it is “easy” to give an upper bound on II — any feasible solution to the dual SDP
will, by weak duality, yield some upper bound on II. Note, crucially, that this does not require
solving an SDP; one can often make a clever guess as to what a good dual solution should be.

Of course, the natural question is whether this upper bound can be made tight, i.e. is it
true that p = d? This is called strong duality. In general, strong duality unfortunately does not
hold. However, a simple sufficient condition for strong duality is Slater’s constraint qualification,
which states that if (say for the primal) there is a strictly feasible solution X (i.e. ®(X) < D
and X > 0), then strong duality holds.

92

Exercise 8.25. Consider the non-standard dual program below. Show that it does not satisfy
strong duality.

infimum: =z

subject to:

o8 o
+ oo
v
o

x
Yy
0 =z+1
R

T,y €

Runtime. It is a common fallacy that “SDPs can be solved in polynomial time”. While the
spirit of the statement is true, in order to actually attain a poly-time solution, two constraints
must be met: The feasible region must be contained in a ball of radius R, and must contain a
ball of radius 7. The runtime of the Ellipsoid Algorithm is then polynomial in the input size (i.e.
encodings of C, W, D; we assume this encoding size scales at least as the dimension of the space
C acts on), log R, log(1/r), and log(1/e€), where € is the additive error in the optimal objective
function value we are willing to tolerate. In practice, these conditions are typically met. Note
also that while the runtime of the Ellipsoid Algorithm is often cited in theoretical algorithmic
results relying on SDPs, in practice more stable and modern methods such as Interior Point
Methods are deployed. In this lecture, we will see an alternative method for solving certain
SDPs; the matrix multiplicative weights method.

8.2.3 Quantum interactive proofs as SDPs

Having introduced quantum interactive proofs and SDPs, we can now formulate the former as
an example of the latter. As stated in Section we shall assume a 3-message Quantum
Arthur-Merlin protocol, which suffices to capture QIP. The setup is as follows:

1. The prover (Merlin) sends the verifier (Arthur) a density operator o in register M; (for
“message 17).

2. Arthur has a pair of measurements { Py, I — Py} and {P;, I — P;} in mind, for 0 < Py, P, <
I and acting on joint space M1 ® Ms. Arthur chooses a uniformly random bit b € {0, 1},
and sends it to Merlin.

3. Merlin sends quantum register My (for “message 2”) to Arthur.

4. Arthur performs measurement { Py, [— Py} on the message registers M ® My, and accepts
if and only if the outcome is Pj.

Formally, one can model the acceptance POVM for Arthur’s random measurement via operator

Q = |0)(0]c ® (Po)ay,nm, + (1) (L ® (P1)asy -

To see why, note that conditioned on bit flip b, Merlin prepares joint state p, € L(M; ® Ms).
In other words, the density operator prepared by Merlin is

1 1
X = 5!0><0|c ® (po) ay My + §|1><1\c ®@ (p1) My M- (8.1)

93

Exercise 8.26. Show that the probability of Arthur accepting is Tr(QX) = $(Tr(Popo) +
Tr(P1p1)).

Of course, pg and p; cannot be arbitrary — in step 1 of the protocol, Merlin committed some
state o on space M7, which remains untouched throughout the remainder of the protocol. Thus,
it must be that both possible end states pg and p; agrees on this “commitment space” My, i.e.

Tras, (PO) = Tra, (Pl) = 0.

Exercise 8.27. Consider any pair of purifications [1g) 4B, |11) ap of some density operator op.
Prove that there exists a unitary Uy such that (Ug ® IB)|¢0><¢0’AB(UI1 ® Ig) = |Y1)(¥1] 45-
Conclude that the restriction to fixing ¢ on the commitment space M; above is without loss of
generality (i.e. for any pair of pure states |¢)g) and [¢)1) Merlin wants to prepare on M; ® My, he
may do so (possibly inefficiently), as long as |¢g) and |¢)1) agree on their reduced state o on My).

With these observations in hand, we can state the primal and dual SDPs capturing our
interactive protocol, where for convenience we have moved the factor of 1/2 from X to Q:

Primal problem (P)

maximize: Tr(QX) Dual problem (D)

subject to: Trpn (X) < I ® oy minimum: || Tre(Your,) || o
Tr(oa,) =1 subject to: Yo, ® Ing, = Q,
OM, i 0 YC,Ml t 0.

Xean,my = 0
Again, let us break down the primal SDP:
e The constraints Tr(c) = 1 and o > 0 ensure o is a density operator.

e Ideally, we wish to force X to be of the form in Equation (8.1)) (but without the 1/2),
which is block diagonal with respect to C:

po O
X = .
<0 m)

In principle, we could explicitly enforce this by having separate variables for pg and pi;
however, since @ is also block diagonal with respect to C, the off-diagonal blocks of X do
not alter the value of the objective function. Thus, without loss of generality the optimal
X sets the off-diagonal blocks to 0 (this technically requires the following exercise).

A B
Bt C

needed in assuming the off-diagonal blocks of X are 07

Exercise 8.28. Prove that if

A 0
-
_O,then(0 C

> > 0. Why is this exercise

Exercise 8.29. Write @) in block form with respect to register C, and confirm it is block-
diagonal.

e We must enforce that pg and p; have reduced state o on M;. To see why the SDP captures
this, we require the following exercise.

94

Exercise 8.30. Prove in Equation (8.1) that tracing out Mj yields I¢ ® oy, , assuming
po and p; have reduced state o on M; (and omitting the 1/2 factor).

This almost explains the last primal SDP constraint, Trys, (X) = Ic ® op, — here we
have an inequality without loss of generality (as opposed to an equality), since any feasi-
ble solution to the inequality can be “boosted” to make the inequality tight, while only
increasing the objective function value.

Exercise 8.31. Prove the claim above: Suppose Tryz, (X) < Ic ® op, but Traz, (X)
Ic®oyy, . Give a new operator X’ such that Tryz, (X) = Ic®opy, and Tr(QX') > Tr(QX
(Hint: By assumption, Ic ® opr, — Tra, (X) = 0.)

£
).

e Finally, we have quietly replaced our use of supremum with maximum.

Exercise 8.32. Prove that Slater’s constraint qualification holds, implying strong duality
holds for P.

Some final massaging. Just as applying a unitary change of basis in our analysis of the Quan-
tum Cook-Levin theorem helped with its analysis, here it turns out to be useful to also perform
an appropriate change of variables. The final SDP we obtain is

Primal problem (P)

Dual problem (D)

maximize: Tr(X)

subject to: ®(X) < Io ® opp minimum: || Tra(Y) ||
Tr(o) =1 subject to: ®* (Yo ar,) = Loy M,
oy, =0 Yo, =0,

Xev v, =0
where we define ® : L(C' ® M; ® Ma) — L(C ® M) as
B(X) 1= Tra, (Q™V2XQ71/?), (8.2)
with adjoint map ®* : £L(C' ® M) — L(C ® My ® My) as ®*(Y) = Q V2(Y @ In,)Q /2.

Henceforth, P and D will always refer to this primal and dual problem, respectively.

8.3 QIP = PSPACE

We are now in a position to show that QIP = PSPACE. One direction of this equality is
“trivial”’, in that QIP 2 IP, for IP the classical analogue of QIP, which is known to equal
PSPACE. Thus, the non-trivial direction is the containment QIP C PSPACE.

A bit of interpretation and context. On the one hand, the statement QIP = PSPACE = 1P is
somewhat disappointing, in that as far as (single-prover) interactive proofs are concerned, quan-
tum resources add no power. On the other hand, it may be interpreted as saying that interactive
proofs are themselves so powerful that additional resources such as quantum computation add

95

nothing new to the picture. It is worth noting, however, that remarkably, this state of affairs
is only the case for single-prover interactive proofs. If we move to multiple prover interactive
proofs (i.e. MIP, with multiple provers who may not communicate with each other once the
protocol starts), it is known that classically MIP = NEXP, whereas quantumly MIP* = RE
(you read that right; MIP* can verify even the Halting problem, which is undecidable)! Here,
MIP* is MIP but where the provers are allowed to share entanglement before the protocol starts.

We begin by stating the algorithm which allows us to put QIP in PSPACE in Section [8.3.1}
Correctness is shown in Section [8.3.2]

8.3.1 The algorithm
Before stating the algorithm, we sketch why it will imply containment of QIP in PSPACE.

Connection to PSPACE. In Section we showed how to exactly capture the acceptance
probability of a 3-message Quantum Arthur-Merlin game (and hence QIP) via an SDP P. In
principle, one can then try to apply the Ellipsoid method to solve P, which would require
time polynomial in the dimension of the matrices involved, such as). Unfortunately, () has
dimension exponential in the number of qubits, n, and so the best the Ellipsoid method could
give us is containment in EXP.

Exercise 8.33. Why is the dimension of) exponential in n?

We hence need an alternate approach for solving P. To begin, what we certainly can do in
PSPACE is produce explicit descriptions of the matrix Q.

Exercise 8.34. Convince yourself that there exists a (uniformly generated) circuit of size expo-
nential in n and depth polynomial in n which outputs the full classical description of matrix @
(ignoring issues of precision in representing individual entries of @) here). The class of decision
problems decidable by such circuits is called NC(poly); crucially for us, NC(poly) = PSPACE.

Next, given a matrix M of dimension d X d, it turns out one can also compute common matrix
operations on M using circuits of size poly(d) and depth polylog(d); this includes, for example,
matrix powers (M¥), matrix exponentials (eM), and spectral decompositions. (When d is
polynomial in the input size, the corresponding complexity class is called NC, and formally
requires all circuits to be generated by a log-space TM. Intuitively, NC is the log-depth analogue
of P.) This means that after computing the explicit matrix representation for in PSPACE
above, we can then do things like take the spectral decomposition of @ in PSPACE as well.
In other words, if we could just come up with an algorithm for solving SDP P which relies
solely on the application of common matrix operations to (), then we could put the entire thing
into PSPACE. This is precisely what the matrix analogue of the multiplicative weights method
allows us to do.

Statement of the algorithm. The idea for solving SDP P via the MW method is analogous
to Section Let us restate the SDP and its dual for convenience first.

96

Primal problem (P)

Dual problem (D)

maximize: Tr(X)
subject to: P®(X) < Io ® opp minimum: || Tre(Y)

oo

Tr(o’) =1 subject to: (I)*(YC,Ml) = IC,Ml,Mg
O'Ml i 0 YC,Ml t 07
Xewy vy = 0

for ®(X) := Trap (Q12XQ™?), @*(Y) = Q7V2(Y © Inp,)Q™'/?, and

Q= % (’0><0|C ® (PO)MLMQ + |1><1‘C ® (Pl)MlvMQ) ’

There are two primal variables in play: X and o. We have no idea what they should be set to,
so just as in Section 8.1} we start with a random guess by setting both to the maximally mixed
state. In each iteration, we check “how badly” the constraint Ic ® opr, — ®(X) = 0 is violated,
and update our guesses for X and o accordingly. For clarity, the actual implementation, given
below, differs somewhat from this, but this is the basic spirit. The variables p and ¢ roughly
play the roles of X and o, respectively (the actual choices of X and o for P will be slight
modifications of the final values of p and ().

Algorithm 2 Multiplicative Weights for QIP
1. For brevity, define N = dim(C ® M; ® Ms) and M = dim(M;).

2. Set parameters vy =4/3, e =1/64, 0 = ¢/(2 H Q! Hoo), T = [41log N/(36)].
3. Set initial states pg = WD/N for Wy = Icgn,em, and (o = ZD/M for Zg = Iy, .

4. Fort=0,...,T:

a) (Check constraint violation) Let IT; project onto the space spanned by the eigenvec-
tors of ®(p;) — vIc ® ¢ with non-negative eigenvalues. Set 5; = Tr(P(p;)I1).

b) If B; < e, accept.
c) (Update current solution) Set

—ed o 211,
pi+1 = Wigr/Te(Wig1) for Wisi=e =0 (ﬁﬂ]>

eSSt Ty 11
Git1 = Z41/Te(Z41) for Zipr = e >i=o c(ﬁj J)'

5. Reject.

It is worth stressing that Algorithm [2| does not directly output a solution (X,o) to SDP P.
Instead, given its output (p, (), what we can do is the following: If Algorithm [2] accepts, then
we can extract a “good” feasible solution (X, o) for P from (p, () which convinces us we are in a
YES case. Conversely, if Algorithm [2] rejects, we can construct a “good” feasible dual solution

Y for D which convinces us we are in a NO case (recall that any dual feasible solution upper
bounds the value of the primal SDP from Section [8.2.2).

97

8.3.2 Correctness

We now show correctness of Algorithm Let A = (Ayes; Ano, Ainy) denote a QIP promise
problem, which recall has a 3-message Quantum Arthur-Merlin game with verifier V. For any
input z € {0,1}", we may assume that if € Ayeq, V accepts with certainty, and if € Apo, V
accepts with probability at most 1/2 + € for (say) e = 1/64. Thus, if 2 € Ay, the primal SDP
P and (by strong duality) dual SDP D in Section achieve value 1, and if z € Ay, they
achieve at most 1/2 4+ 1/64.

Theorem 8.35. If Algorithm @ accepts, then P has optimal value strictly larger than 5/8. If
Algorithm @ rejects, then P has optimal value strictly smaller than 7/8.

Exercise 8.36. Why does Theorem [8.35| show that Algorithm [2] correctly decides our QIP in-
stance x?

We break the proof down into lemmas for the YES and NO cases.

Lemma 8.37. (YES case) If Algom'thm@ accepts, then P has optimal value strictly larger than
5/8.

Proof. Let p, ¢, 11, and 8 denote the final values to p¢, (¢, Iz, B¢ set by Algorithm [2l We claim

that
1

X: g =
v +28" v+28

is a feasible solution to P with value strictly larger than 5/8.

(V¢ + 2Tro (LP(p)IT)]

Exercise 8.38. Prove that the objective function value, Tr(X), is indeed strictly larger than
5/8.

Exercise 8.39. Show that o is a density operator.

It thus remains to show that the constraint ®(X) < I ® o)y, is satisfied. For this, rearrange
B(X) — 710 © ¢ <TB(X) —] @ O < (X < 20 © Tro((X)T),

where the first inequality holds by the definition of II, the second since II(I¢c ® ¢)IT = 0, and
the third by the fact that Map < 214 ® Tra(M) for any Map = 0 and A = C2. O

Lemma 8.40. (NO case) If Algom'thm@ rejects, then P has optimal value strictly smaller than
7/8.

Proof. We claim that a dual feasible solution to D is

~
_

_1—|—26
T

Y

Ht7

|-

t

I
=)

and that Y attains dual objective function value || Tro(Y) ||, < 7/8; the lemma then holds by
weak duality. As the proofs of both claims use a similar approach, we show only feasibility here.

98

Y is dual feasible. The proof approach is reminiscent of that of Theorem [8.1| (the classical MW
algorithm); it turns out the correct “potential function” to use now, however, is Tr(Wy). We
show upper and lower bounds on Tr(Wr) to establish that ®*(Yc ar,) = Io a0, Equivalently,
we show Amin(®*(Yoour,)) > 1.

Exercise 8.41. Show that Y > 0.

Lower bound on Tr(Wr). We begin with the lower bound, which is simpler, and follows from
the same principle as in the classical lower bound of Theorem — the sum of non-negative
numbers) . w; is at least as large as any one number w;.

Exercise 8.42. Prove that

Te(Wy) = Tr (6652501 q)*(gjnj)) s P (215 4m)) (8.3)

Upper bound on Tr(Wr). We would like to upper bound
—ed T e (LI
Tr(Wr) = Tr (e 2= (ﬁj J))

using an inductive approach similar to the upper bound in the proof of Theorem The
problem is that the exponents ®*(II;/8;) do not pairwise commute; thus we cannot simply
factor out the last term exp(—e(SCI)*(/BT—I_IHT,l)) and apply the induction hypothesis. Luckily,
since we are interested in the trace of W, we are saved by the Golden-Thompson inequality,
which states that

Tr (€A+B) <Tr (eAeB) for Hermitian A, B.

Exercise 8.43. For any t € {1,...,T}, use the Golden-Thompson inequality to show that

Te(Wy) < Tr(Wy_ e~ 0® (Mem1/Be1)y, (8.4)

Now that we've isolated the last term in the exponential, we wish to bring its argument
d®*(IT;—1/B¢—1) down out of the exponent. For this, we use the fact that for any Hermitian M
satisfying 0 < M < I, and every real r > 0,

eM < T4re’"M and e ™ < T —re " M.
From this, we immediately have that
e~ €[00 (It—1/Br—1)] < I —ebe @ (I;_1/Bi_1), (8.5)

assuming the result of the following exercise.

Exercise 8.44. Prove that ||d®*(II;—1/Bi—1) ||, < 1. (Hint: Use submultiplicativity of the
spectral norm to show that || ®*(II;—1) ||, < H Q! HOO)

99

Exercise 8.45. Use Equation (8.5)) and the fact that W;_; = 0 to conclude that

Tr [<I>(pt1)Ht1]>
ﬁtfl ’

(Hint: Use Exercise to justify applying Equation (8.5) to Equation (8.4]), expand out the
resulting expression, and then look up the definition of p;_1.)

Tr(W;) < Tr(Wim1)(1—ede™ “Tr [pr—1P* (Ii—1/B—1)]) = Tr(Wi_1) (1 —ede” ¢

Combining this with the fact that by definition, 8;—1 = Tr [®(p;—1)II;—1], and that for all real
r, 1+r <e", we conclude
Tr(W;) < Tr(W;_1)e ¢ ",

Exercise 8.46. Use the fact that Tr(Wy) = NN to obtain our final upper bound,

TI“(WT) < e—TE(Se*-HogN' (8.6)

Combining upper and lower bounds. Combining Equations ({8.3]) and , we have that

N

1 log N

)\min o~ —II; el
Bj J €d

J

I
o

Exercise 8.47. Recalling that Y = 1‘;25 Z?:Bl él‘[t, use the fact that e=¢ — €2/4 > 1 — ¢ to
complete the proof of dual feasibility by concluding that Apin(®*(Y)) > 1. (Note the argument
to ®* is now Y.) m

In conclusion, we have covered a rather long journey for this set of lectures notes, spanning
the MW method, SDPs, interactive proofs, and finally the proof that QIP = PSPACE. Each of
these is a fundamental tool or result in its own right; that they fit together to tell an elegant
story is nothing short of remarkable.

100

9 Boson Sampling

“It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you are.
If it doesn’t agree with experiment, it’s wrong.”
— Richard P. Feynmann

Introduction. We began in Lecture 1 by stating that the field of quantum computation is at a
critical crossroads, with one of the following statements being necessarily false: The Extended
Church-Turing Thesis is true, integer factorization does not have a polynomial time classical
algorithm, or large-scale universal quantum computers can be built. Since this crossroads arose
due to the discovery of Shor’s quantum polynomial-time factoring algorithm, a natural goal is
to try and show the Extended Church-Turing Thesis is false by running Shor’s algorithm on a
“large enough” quantum computer.

Unfortunately, there are caveats to this. First, even if Shor’s algorithm could be implemented
experimentally, this does not rule out the second statement — that perhaps there is an efficient
classical algorithm for factoring. More worrisome is the fact that we are arguably not close to a
functioning universal quantum computer capable of breaking today’s RSA keys. For example, to
a theoretician, a quantum random walk on the line is a rather basic construct; yet, implementing
such a walk efficiently (i.e. resources scaling polynomially with the length of the walk) in an
actual photonic system is highly non-trivial, requiring ideas such as time multiplexing.

Luckily, if our goal is to disprove the Extended Church-Turing Thesis, we do not necessarily
need a universal quantum computer. Rather, a sufficiently restricted quantum model may still
be able to solve “hard” problems, and yet be implementable on a large scale via near-term “noisy
intermediate scale quantum devices” (NISQ). This quest for an experimental demonstration
of quantum computational speedup has fallen under the moniker of “quantum supremacy”,
with multiple candidate approaches to date: The Instantaneous Quantum Polynomial-Time
(IQP) model, random circuit sampling, and the deterministic quantum computation with one
quantum bit (DQC1) model. Here, however, we shall focus on a framework which has elicited
a particularly beautiful collaboration between the computer science and physics communities:
Boson sampling.

Organization. We begin in Section with an introduction to non-interacting bosonic sys-
tems. Section describes the connection between such systems and computation of the matrix
permanent. Using this background, Section defines the Boson Sampling problem. Finally,
Sections 9.3.1] and [9.3.2] discuss intractability of exact and approximate Boson Sampling for

classical computers.

9.1 Of hedgehogs and photons

The basic premise of Boson sampling is to use non-interacting Bosonic systems to implement
a computational task which is “easy” quantumly, yet provably “hard” classically. For our pur-
poses, “bosons” will be “photons”, and to begin with, we will equate “photons” with “hedge-
hogs”.

101

The hedgehog model of computing. Suppose we have n identical hedgehogs, and m > n
burrows (numbered 1 to m). The hedgehog model is as follows:

1. Before nightfall, the first n burrows contain precisely 1 hedgehog eachﬂ
2. During the night, each hedgehog can move from its current burrow to any other. Some
rules for this:
e Parties are allowed, i.e. a burrow can host multiple hedgehogs.
e No hedgehogs are created or destroyed in this process, i.e. we have conservation of
hedgehogs.

3. When the night ends, we measure: How many hedgehogs are in each burrow?

To formalize this model, we can work in the hedgehog number basis, which is different from the
usual standard basis for qubit systems. Namely, to specify the positions of all n hedgehogs, we
use basis state

|S> = ’5152...5m>

where s; € {0,...,n} denotes the number of hedgehogs in burrow i. The s; are called “occupa-
tion numbers”, and this basis the “occupation number basis”.

Exercise 9.1. Why are we only concerned with the number of hedgehogs per burrow? (Hint:
Which keyword used above essentially says this is the only defining characteristic of the hedge-
hogs?)

The set of all such valid basis states is denoted
Dy = {(51,...,sm) | s; € {0,...,n} and Zsi = n} (9.1)
i=1

Exercise 9.2. Why is the summation condition required in the definition of ®,,,?

Of course, we’re not just dealing with any old hedgehogs, but quantum hedgehogs; thus, we
allow superpositions over hedgehog states:

W>: Z 045|S>,

S€EPm, n

where as usual) g]oz5]2 = 1. A crucial point to note here is that unlike with m qubit systems,
the vector space we are working in is not a tensor product of m systems of dimension n; we
revisit this shortly.

From hedgehogs to photons. To move from the world of hedgehogs to photons, we make two
simple substitutions: Replace the word “hedgehog” with “photon”, and “burrow” with “mode”
(for this lecture, a “mode” can be thought of as a spatial mode, meaning a “location” of a
photon). We can now rephrase our discussion above formally in the setting of photons:

!Most hedgehog species are nocturnal. They are also very cute.

102

Figure 9.1: As this is the closest we will get to experiment in this course, it is worth seeing
an actual piece of hardware: Depicted above is a beamsplitter designed to reflect
80% of incoming light, and transmit the remaining 20%. Intuitively, a beamsplitter
implements a Hadamard gate. (Source: https://commons.wikimedia.org/wiki/
File:Flat_metal-coated_beamsplitter.png.)

1. At the start of the experiment, our apparatus has n photons in the first n modes, and the
remaining m — n modes are empty, i.e. our start state is

1) = [170™") € By

2. Formalizing the set of allowed operations (i.e. how the hedgehogs choose to switch bur-
rows) is trickier, as we are working in a Hilbert space without a tensor product structure
(in contrast to qubit systems). To see the full picture takes two steps: (1) We first look
at the “idealized” case in which we have 1 photon and m modes; this will be analogous to
modeling an m-dimensional qudit. The unitaries U in this case will hence be m x m. (2)
We then show how to map any m x m unitary U up to the full space ®,,, spans, which
requires an understanding of how U acts on multi-photon configurations.

Single photon configurations. Denote the subset of single photon configurations as ®,, 1 =:
{li)} C Py, i.e. |i) has s; =1 for some i € m] and s; = 0 otherwise. Restricted to this
space, one can think of the entire system as a single m-dimensional qudit, with the ith
“standard basis state” given by |i) = [0°"110™~%) (i.e. imagine encoding the basis states
in unary, not binary). The set of allowed operations on this space, as expected, is the set
of all m x m unitary matrices U.

What makes optical setups appealing is that any such U can be written U = Ur---U;
for T € O(m?), where each Uy, is an m x m unitary or optical element falling into one of
two classes: Phase shifters and beam splitters. These optical elements are relatively easy
to implement in a lab; see Figure Restricted to the single photon basis ®,, 1, each Uy,
acts non-trivially only on some pair of modes i and j, i.e. on unary basis states |i) and
|7), and hence can be represented as a 2 x 2 unitary

a b
Uk_<cd)7

where the rows are labelled by |i) and |j), respectively. On ®,, 1, Uy acts as expected:

i) — ali) + cl7), |7) = bli) + d|j), |k) — |k) for any k # 1, j. (9.2)

103

https://commons.wikimedia.org/wiki/File:Flat_metal-coated_beamsplitter.png
https://commons.wikimedia.org/wiki/File:Flat_metal-coated_beamsplitter.png

Exercise 9.3. Consider the Pauli X2 gate applied to modes 1 and 2. Then, the 2 x 2
optical element has matrix representation (restricted to Span(|1),]2)))

0 1
xa=(01).

What is X12|1>, X12|2>, and X12|/£> for k > 27

Exercise 9.4. Write down the full 3 x 3 matrix representation for X2 with respect to
the ®,,, 1 basis when m = 3.

Restricted to this ®,, 1 basis, phase shifters and beamsplitters have intuitively simple
representations (for § € R):

1 0 nd cosf —sinb
0 e & sinf cosf ’

Thus, phase shifters are essentially phase gates, and beamsplitters are analogous to
Hadamard gates.

Exercise 9.5. How does a phase shifter applied to modes 7 and j act on basis states
i),]7) € ®m.1? How about a beam splitter?

Multi-photon configurations. Focusing on single-photon configurations gave an intuitive
sense of what phase shifters and beamsplitters do, but in reality our full system of n
photons in m modes is not m-dimensional, but M = |®,, ,|-dimensional.

Exercise 9.6. Show that M = (mt?:_l).

Given any m x m unitary U (which recall can be implemented with phase shifters and
beamsplitters), we hence need a way of mapping U to the larger M-dimensional space
to understand its action on all basis states in ®,, ,,, as opposed to just ®,, ;. (In other
words, how does Uy act on modes which contain multiple photons, such as |20)?) This
mapping ¢ : U(C™) — U(CM) turns out to be a homomorphism, meaning for us that it
obeys ¢(U) = ¢(Ur) - - - ¢(Uy). Thus, it suffices understand its action on the 2 x 2 optical
elements Uy, which is:

(stlp(Ug)|uvy =0 if s+t#u+wv (9.3)
lp!
(stlp(Uk)|uv) =1/ % > (S) (t> aPb* P i sHt=u+o. (9.4)
ST p-;%ju P q
g<t

Exercise 9.7. Why is Equation (9.3]) equal to 07 (Hint: Which property of the hedgehogs
must we preserve?)

104

Exercise 9.8. Setting a = d = 0 and b = ¢ = 1, confirm that Equations (9.3) and (9.4)
correctly recover the action of Pauli X when restricted to ®,, ;.

Exercise 9.9. How does a phase shifter act on basis state |20) € $g97?

Exercise 9.10. What is the overlap onto |11) € g if we start with [20) € ®5 and
apply Uy = X? How about the overlap onto |02)? What does this suggest intuitively
about how X acts on multiple photons?

Putting it all together. In sum, given any desired m x m unitary U (including ones which
will later encode hard problems), in an optical setup one can implement U by a sequence
of O(m?) phase shifters and beamsplitters, and the effective action of this U on the larger
M-dimensional Hilbert space is prescribed by ¢(U) = ¢(Ur) - - - o(Uy).

3. At the end of the experiment, we measure with respect to basis ®,,, to see which modes
the photons are in. Let Dy denote the distribution obtained, assuming the experiment
implemented m x m unitary U. Then, the probability of observing configuration S is

Pr[S € ®p] = \(S\cp(U)H")\Q.

9.2 Connection to the matrix permanent

To now connect our optics setup to hard computational problems, we return to our hedgehog
model of computing, and study a related thought experiment. In this experiment, we have n
indistinguishable hedgehogs and n burrows. The rules are as follows:

1. Before nightfall, burrow i € [n] contains precisely one hedgehog, the hedgehog labelled 1.
2. During the night, hedgehog ¢ moves to burrow j with probability a;;.

3. When the night ends, we ask: What is the probability that each burrow contains precisely
one hedgehog?

Let us derive a formula for this probability, for which we simply have to count all configurations
the hedgehogs could end up in. For starters, observe that the probability that the ¢th hedgehog
remains in the ¢th burrow is just a1 - - - anp.

Exercise 9.11. What is the probability that for all ¢, hedgehog i moves to burrow (i mod n)+
17

Exercise 9.12. Show that the probability that each burrow contains precisely one hedgehog is

Z Hai,a(i) =: Per(A), (9.5)

€Sy i=1

where S, is the set of permutations acting on n elements, and A is the n x n matrix with entries
Qg

105

Brief aside on the permanent. The quantity in Equation is the permanent of matrix A,
and has seen considerable attention for at least two centuries now (being mentioned in the 1812
memoirs of Binet and Cauchy). It looks remarkably like a related quantity — the determinant
of A, whose formula is identical except each term in the sum is multiplied by the sign of the
permutation o. Yet, these two apples most certainly did not fall from the same tree — while
the determinant is efficiently computable, the permanent is #P-hard to compute exactly, even
if A consists only of entries from {0, 1}. The best known general algorithm for Per(A) is Ryser’s
algorithm, which requires ©(n2") arithmetic operations. We do catch a break when A has only
non-negative entries: In this case, there is a fully polynomial-time randomized approximation
scheme (FPRAS) for approximating Per(A), i.e. for any inverse polynomial error e, there is a
polynomial-time randomized algorithm outputting Per(A) up to relative error (1 & ¢). While
this setting does apply to our hedgehog model above, it will crucially not apply for the type of
matrices which arise through boson sampling.

Connection to optics. Recall that in our optics setup, any m x m unitary U can be performed
(restricted to the single photon space) via a sequence of phaseshifters and beamsplitters. The
key point is that if we run our optics experiment starting in configuration |T") € ®,, , and apply
U, then one can show that the probability of observing end configuration |S) € ®,, , is given
by

|Per(Ust)|?

S|o(U)|T)|? =
[(S|e(U)|T)] P TT B

(9.6)

for |S) = [s1 -+ Sm), |T) = |t1- - tm), and Ugr defined via the following two-step process (this
is necessary because we must account for the action of U on multi-photon configurations via

©):
1. Map U to Ur by listing t; copies of column ¢ of U.
2. Map Ur to Ugr by listing s; copies of row ¢ of Ur.

This process is best demonstrated with an example, for which we set m = 3, n =2, S = |200)

and T = |110):
0 1
Ust = (01) :

Exercise 9.13. Show that Ugr is an n X n matrix, for n the number of photons.

0 1
0 0

O = O
S O =

Exercise 9.14. Show that if |T") = [1"0™~"), then Uy is U restricted to its first n columns.

Exercise 9.15. Show that if |S) = |T") = [1"0™™"), then Ugr is the upper left n x n principal
submatrix of U, i.e. the submatrix obtained by keeping the first n columns and rows of U.

In sum, if one could write down output probabilities of our photonic experiment, then one
could compute permanents of matrices Ugr. In particular, as the last exercise above suggests,
when |S) = |T') = |1"0™~"), this boils down to the permanent of whichever n x n matrix A we
are able to embed in the top-left block of U. Of course, there are some important questions to

106

be answered: Which types of matrices can we embed into unitaries in such a fashion? How do
we convert the ability to sample to the ability to estimate output probabilities? Can an experi-
mental quantum optics device, which will inherently be subject to noise and imperfection, itself
perform such estimation? These questions, along with the connection between the permanent
and photonics setups, are the starting point of boson sampling.

9.3 Boson Sampling

We are now in position to semi-formally define the task of Boson Sampling.
Definition 9.16 (Boson Sampling).

e Input: An m X m unitary matriz U.

e Output: Define distribution Dy as follows. Starting in configuration [1™) € @, we
imagine running the optics setup outlined in Section [9.1] with unitary U. For any config-
uration S € @y, , the probability of observing output configuration S is

|Per(Usg 1n)|2
Prp,[S] = ———————.
DU[] 81!‘--8m!
The output of Boson Sampling is to sample configurations according to Dy .

Two remarks are in order: First, unlike all other computational problems we have seen in this
course, Boson Sampling is not a decision or promise problem; rather, it is a sampling problem
(i.e. the output is not a single bit, but a random sample over strings). Second, the “semi-formal”
aspect of the definition above is that we have not specified the precision to which the sampling
must be done (i.e. are we required to sample from Dy exactly? Approximately? Within what
type of error?). These distinctions are crucial, and are discussed in the next two sections.

9.3.1 The exact case

The strongest variant of Boson Sampling would be to require the sampling to be perfect — i.e.
one outputs samples from ®,,,, exactly according to Dy;. This is not experimentally realistic,
as any physical setup is subject to noise. Nevertheless, in this case one can rigorously show the
following result.

Theorem 9.17 (Exact classical Boson Sampling). Suppose there is a classical algorithm A
which, given any m X m unitary U, solves the Boson Sampling problem ezxactly. We make no
assumptions about A (e.g. it could be a P, BPP, or PH machine). Without loss of generality,
we may view A as a deterministic machine which is fed a uniformly random string of bits r.
By assumption, the sample produced by A(U,r) is distributed exactly according to Dy. Then,

p#P c BppNP*,

Deer in the headlights: Interpreting Theorem [9.17]. Theorem is a bit stunning at first
sight, so let us carefully unpack it.

e What it does say is that if A is a BPP machine (or even a PH machine!), then

PBPP

p#P c BPPN C PH,

which would collapse PH. Thus, it is highly unlikely that exact Boson Sampling is effi-
ciently simulatable classically.

107

e What it does not say is anything about whether a quantum computer can perform exact
Boson Sampling. And therein lies the magic of the theorem — Theorem does not
prove that exact Boson Sampling is #P-hard. Rather, it shows that if there is an efficient
classical algorithm for Boson Sampling, then PH collapses.

Exercise 9.18. Why would it be presumably “bad” if Theorem [9.17] actually showed
Boson Sampling is #P-hard? (Hint: What would this say about the ability of quantum
computers to solve Boson Sampling?)

The way Theorem [9.17]accomplishes this feat is by exploiting the fact that the randomness
r in any classical machine A can be “extracted” from it. In other words, a classical
algorithm A is without loss of generality deterministic, up to an input string of uniformly
random bits r.

Exercise 9.19. Why is it not clear how to similarly “extract the randomness” out of a
quantum computation?

e While theoretically interesting, Theorem [0.17] unfortunately does not suffice to rule out
the Extended Church Turing thesis, as even an optical setup realistically cannot perform
exact Boson Sampling due to experimental noise. Thus, we must consider approximate
Boson Sampling.

9.3.2 The approximate case

While things work out neatly in the exact case, the approximate case (which is the relevant
one) is much messier; in particular, we do not have a rigorous statement along the lines of
Theorem Rather, there is a two-step agenda in place, the second part of which currently
relies on (arguably reasonable) conjectures:

1. What is currently proven: If one can classically simulate “approximate” Boson Sam-
pling, then one could compute the permanent “approximately” and “on average” (i.e. for
“most inputs”).

2. What relies on conjecture: Computing the permanent “approximately” and “on av-
erage” is #P-hard.

Taken together, this agenda would yield that efficient classical simulation (i.e. in BPP) of
“reasonable” Boson Sampling setups (i.e. allowing reasonable error, and taking into account
“average-case” inputs as opposed to extremal worst-case input&EI) is likely impossible. Again,
the agenda does not imply that simulating Boson Sampling approximately and on average is
#P-hard, but rather that any classical algorithm for such a simulation can be bootstrapped
to solve #P-hard problems. Finally, let us stress that it is not clear whether even a quantum
computer can solve approximate Boson Sampling on average — the biggest challenge is arguably
the requirement for single photon sources (i.e. to prepare the initial state |1)). Addressing this
question is not the purpose of today’s lecture.

2This distinction is crucial. A classic example is the canonical NP-complete problem 3-SAT; while intractable
in the worst case, many (if not most) instances of 3-SAT can be solved efficiently in practice using heuristics.

108

Formalizing the agenda. In the remainder of this lecture, we shall sketch how Step 1 of the
agenda above is formalized and shown. The computational problem capturing approximate
permanent computation on average is the following.

Definition 9.20 (Gaussian Permanent Estimation (GPE)).

e Input: (1) A random matriz X € L(C™), each entry of which is distributed independently
according to the standard Gaussian distribution N(0,1). (2) Precision parameter € > 0,
specified in unary. (3) Success probability parameter § > 0, specified in unary.

e Output: With probability at least 1 — § (with respect to the randomness in choosing X),
output a value z € R satisfying

|Per(X)|? — en! < z < |Per(X)|? + enl.

Exercise 9.21. Which parameter above captures the notion of solving for the permanent “ap-
proximately”? Which parameter captures “on average”?

The main theorem of this lecture is the following, which states that if efficient classical
simulation of approximate Boson Sampling on average is possible, then GPE is in PH.

Theorem 9.22 (Main Theorem). Let Dy be the Boson Sampling distribution from Defini-
tion for m x m input unitary U. Suppose there exists a classical algorithm A which,
giwen precision parameter € > 0 in unary, outputs a sample from distribution Dy, such that
|Dy — Dy;| < € in time polynomial in m and 1/e. Then,

GPE e BPPNP",

For clarity, |Dy — Dy;| denotes the total variation distance between distributions Dy and Dy;.

Let us also formalize what we mean by a “classical algorithm A” in Theorem above.
Roughly, we shall think of A as an approximate Boson Sampling oracle, i.e. we will not care
about its internal workings (other than it being deterministic), but just its input/output be-
havior.

Definition 9.23 (Approximate Boson Sampling oracle). A deterministic algorithm A, to be
treated as an oracle, which takes in as input:

e an m X m unitary matriz U,
e a precision parameter € > 0 encoded in unary,
e and “random” string r € {0,1}P°Y (™).

Let D A(U, €) denote, for any fired U and €, the distribution over outputs of A when r is uniformly
random. Then, A outputs samples from @y, , distributed according to distribution D4 (U, €) such
that, for all U, e,

|DA(U,€e) — Dy| <.

109

Proof of Theorem (10,25

We are now ready to move to the final stage of this lecture; giving a proof sketch of Theo-
rem Again, let us stress that this theorem only says that classical simulation of approxi-
mate Boson Sampling solves a problem related to computation of the permanent, GPE. It does
not tell us whether GPE is hard to begin with (this would be the job of Step 2 of the agenda
of Section which currently relies on conjectures), nor does it say anything about whether
quantum computers can simulate approximate Boson Sampling.

Proof sketch of Theorem[10.25. Let X, e, be inputs to GPE, where recall X is n x n. We
wish to bootstrap a (classical) approximate Boson Sampling oracle A to approximate |Per(X)|2
within additive error +en!, with success probability at least 1 — § over the random choice of
X, in class FBPPNPY, (To be technically correct, we use the base class FBPP here in place
of BPP; the former is the function analogue of BPP which is allowed to output strings longer
than length 1.) For this, we will need two technical ingredients:

1. The Hiding Lemma.

2. Stockmeyer’s approximate counting algorithm.

We will introduce these when the time comes; for now, let us begin with the “naive” approach
for solving GPE using A.

The “naive” approach. As suggested at the end of Section[9.2] we will attempt to embed nxn
matrix X in the top left corner of an m x m unitary U, so that simulating Boson Sampling on
U will output configuration [1") € ®,,,, with probability precisely [Per(X)|?. This gives us the
ability to sample according to |Per(X)|*> — to then convert this into the ability to estimate the
scalar [Per(X)|? itself, we apply Stockmeyer’s algorithm.

Exercise 9.24. Given the ability to run an experiment which accepts with probability 0 < p <
1, what is the naive way to estimate the scalar p? Why does this approach not necessarily work
to estimate |Per(X)|* above (i.e. why do we seem to need Stockmeyer’s algorithm)?

To begin, recall that X is n X n. Let our Boson Sampling setup have n photons and m > n
modes (e.g. m = O(%n5 log? %) suffices). By rescaling our input as X’ := X/\/m, our task is
to estimate .

2 2
|Per(X")|" = o |Per(X)|

within additive error en!/m"™. We proceed as follows:

1. Embed X’ as the top-left n X n principal submatrix of a unitary U (we ignore how this is
done for the moment).

2. Run the Boson Sampling oracle A with input (U, €,) for uniformly random r and inverse
polynomial e. This allows us to sample from distribution Dy, such that Dy — D] < e.
Now, if it were true that Dy = Dy, then we would be in luck, since the probability of
observing precisely one photon in each of the first n modes is

|[Per(Usn,1n) "2
ny __) _
PrDU[l] = W = ’Per(X)’ .
Given the ability to sample outcome 1" with probability [Per(X’)|?, we can now convert
this to the ability to approximate the scalar [Per(X”)|* itself via the following theorem.

110

Theorem 9.25 (Stockmeyer’s approximate counting). Given Boolean function f : {0,1}" —
{0,1}, let p be the probability that a uniformly random input x causes f to accept, i.e.

p=Procouylf@) =11=0 > f)

For any error tolerance g > 1+

in FBPPNP'

m, p can be estimated within multiplicative error g

Exercise 9.26. In an earlier exercise, we said the naive approach for exploiting the ability
to run an experiment which accepts with probability 0 < p < 1 into an estimation of p
itself did not work. Why does Stockmeyer’s algorithm get around this problem? (Hint:
Does Stockmeyer’s algorithm restrict p in any essential way?)

Reflection. It is now clear why Theorem works only for classical algorithms;
namely, any classical oracle implementation is just a Turing machine encoding a Boolean
function f:{0,1}" — {0,1} (up to additional inputs to the machine, such as the random
string 7). This allows us to apply Stockmeyer’s algorithm to count the number of satis-
fying assignments to f, and hence to estimate p. If A were instead to be quantum, an
analogous statement is not known|

The problem with the naive approach. In our discussion of Stockmeyer’s algorithm above, we
assumed the Boson Sampling oracle is perfect, i.e. Dy = Dy;. However, recall that in our
setup, A only satisfies |Dy — Dy;| < e. So we must ask: How badly does this error affect our
desired sampling outcome, S = 1"?7 Intuitively, since € € O(1/ poly(n)), and since there are
exponentially many (i.e. (Z‘) for m > n) possible experimental outcomes or configurations in
®,, n, the expected error per configuration is exponentially small in n. However, we are not
interested in most configurations — we are only interested in the output configuration S = 1".
And it is entirely possible, since we make no assumptions about A, that all of the ¢ sampling
error A makes is concentrated on this one outcome 1™ we care about (i.e. all other outcomes
S" # 1™ € ®,,, are sampled perfectly by A). This is a huge problem — Prp, [1"] could be
exponentially small in n, whereas € is as large as inverse polynomial in n, potentially wiping
out our estimate of the former.

The final ingredient: The Hiding Lemma. To resolve this problem, let us revisit why the
sampling outcome S = 1" encoded the permanent of X’ in the first place.

Exercise 9.27. Argue that S = 1" encodes |Per X’\Q only because we embedded X into the
top-left n x n principal submatrix of unitary U. In other words, suppose we instead embed X
(e.g.) into rows 2 to n + 1 and columns 1 to n of U — which output configuration S € ®,, ,
would now encode |Per X'|*?

As the exercise above suggests, the output configuration S we care about depends entirely
on where in the matrix U we embed X’. Thus, if oracle A makes a large error on output

3Intuitively, the problem quantumly is that “computational paths” can destructively interfere and cancel out, so
that the acceptance probability p of a quantum circuit is no longer the sum of a set of non-negative numbers,
but the sum of both positive and negative numbers.

111

configuration 1", no problem — we simply encode X’ elsewhere in U. Of course, a priori we
have no idea on which configurations A makes an error. So the obvious thing to do is to embed
X’ in a random n x n submatrix of U. How to implement this, however, is not obvious —
in particular, we need to do the embedding cleverly so that U looks completely random to
A (i.e. A should have no way of distinguishing where in U the submatrix X’ was hidden).
By doing so, we may argue that even if A acts adversarially, it cannot corrupt the particular
output configuration we care about with non-negligible probability. Thus, the error incurred by
A can be neglected with high probability, and we can then apply the “naive” approach using
Stockmeyer’s algorithm above.
This “hiding/embedding” trick is accomplished by the Hiding Lemma.

Lemma 9.28 (Hiding Lemma). Fiz n, § > 0, and m > n (e.g. m € O(:n®log?%) suffices).
There exists a BPPNY algorithm B which, given an n x n matriz X with entries independently
and identically distributed as N(0,1), behaves as follows: B succeeds with probability 1 — O(0)
over the choice of X, and conditioned on succeeding, outputs a random m X m unitary U
according to a distribution Dx, such that both of the following hold:

1. Assuming B succeeds with non-zero probability on X, we have that X' = X/\/m occurs
as a uniformly random n X n submatriz of U.

2. The matriz U looks “uniformly random”. (Formally, the distribution over m X m matri-
ces produced by first drawing X, and then conditioning on B succeeding on input X, is
precisely the Haar measure over m X m unitaries.)

In words, the Hiding Lemma does exactly what we need — property (1) states that the matrix
for which we wish to compute the permanent, X', is embedded in a random location of unitary
U. If we could assume the approximate Boson Sampling oracle A is “honest”, this alone might
suffice. However, since we cannot assume anything about A, we have our failsafe — property (2)
says that not only is X’ randomly embedded into U, but that there is information theoretically
no way to tell, given U alone, where X was hidden. (Here we are implicitly using the fact that
if two distributions, or more generally density operators, have trace distance 0, then there is no
possible measurement which distinguishes these operators with probability better than random
guessing.) Thus, it can be shown that the e € O(1/poly(n)) error incurred by our approximate
Boson sampling oracle is highly unlikely to affect the particular output configuration S € ®,,,
which corresponds to where X’ was hidden. Thus, we can apply Stockmeyer’s algorithm to the
choice of S output by the Hiding Lemma to estimate X', yielding the claim of Theorem

We close by remarking that the proof of the Hiding Lemma is rather technical, and thus
omitted for the purposes of this lecture. However, it is not entirely surprising that random
submatrices of Haar-random unitaries look “Gaussian” — a standard approach for sampling
Haar-random unitaries is roughly to begin by picking all entries as i.i.d. Gaussian entries, and
then adjusting all columns to be orthonormal via the Gram-Schmidt procedure. Indeed, this is
precisely one of the reasons that GPE is defined according to Gaussian instances to begin with.
(Of course, the proof of the Hiding Lemma remains non-trivial.)

O]

112

10 BQP versus the Polynomial Hierarchy

“And it is also said,” answered Frodo: “Go not to the FElves for counsel for they
will answer both no and yes.” “Is it indeed?” laughed Gildor. “Elves seldom give
unguarded advice, for advice is a dangerous gift, even from the wise to the wise, and
all courses may run ill.”

— J. R. R. Tolkien, The Fellowship of the Ring

Introduction. In Assignment 3, we showed the Sipser-Géacs-Lautemann Theorem, which stated
that BPP C PH (more precisely, BPP C 3/NII5). A natural question is thus: Could BQP C PH
as well?

At first glance, this question appears wholly unconnected to our study of Boson Sampling
from Lecture 9. A closer look, however, reveals similar magic at play: BPP C PH is shown
by leveraging the fact that randomness can be “extracted” from a randomized Turing machine;
in this sense, a randomized Turing machine can be viewed as deterministic, instead taking a
uniformly random string as input. Whether the inherent randomness in quantum circuits can
similarly be extracted, however, is entirely unclear. Indeed, it was precisely this distinction
between the classical and quantum models which was exploited in Boson Sampling to argue
that if a classical (but not quantum!) algorithm could solve the approximate Boson Sampling
problem, then PH is at riskE] of collapsing. It hence seems this distinction between “classical and
quantum randomness” has an important role to play in delineating the power of classical versus
quantum computation. Indeed, for this reason, the techniques of the Sipser-Gacs-Lautemann
Theorem break down in the quantum setting, and BQP is generally believed not to lie in PH,
in contrast to BPP.

Of course, proving BQP & PH is difficult. In this lecture, we discuss arguably the next best
thing: “Evidence” that BQP is not in PH in the form of an oracle separation between the
classes. The word evidence is in quotes here, as recall oracle separations are not necessarily
reliable evidence that a pair of classes are distinct. For example, there exist oracles A and B
relative to which one can rigorously prove P4 = NP4 and yet PP # NPZ. This is the meaning
of the opening quote of this lecture — oracle separations are like Elves; they may “answer”
both no and yes, and it is not clear what the correct answer should be. (As an aside, what
oracle separations do rigorously show is that any separation proof between (in this case) P and
NP must be non-relativizing, i.e. must break down when oracles are added to the picture.)
Nevertheless, as separating classes is typically difficult, oracle separations are often viewed as a
desirable first step in this direction.

Organization. We begin in Section by stating and parsing the key claim on which the
lecture rests. This includes fleshing out a connection between bounded depth circuits and
alternating quantifiers in Section The remainder of the lecture shows the key claim:
Section [10.2 states the distribution D required for the claim, and Sections and sketch

We say “at risk” of collapsing, as recall in the setting of approximate Boson Sampling, part of the research
agenda currently relies on conjectures.

113

its proof. This lecture uses some useful tools such as Fourier analysis to study Boolean functions,
which are worth delving into in their own right. A nice reference for the latter is https:
//arxiv.org/abs/1205.0314 (Analysis of Boolean Functions, lecture notes of Ryan O’Donnell
with a guest lecture by Per Austrin, scribed by Li-Yang Tan).

10.1 The key claim

We begin by stating and parsing the key claim on which the lecture rests. Throughout this
lecture, we set N := 2™ for n the input parameter of interest (i.e. N is exponentially large).

Theorem 10.1. Let Usn denote the uniform distribution over {:I:I}QN. There exists an explicit
distribution D over {£1}*Y satisfying both of the following:

1. (Distinguishing is easy quantumly) There exists a quantum algorithm able to distinguish
Usn from D

e with advantage Q2(1/log N), and
e in time O(log N) using 1 input query.

2. (Distinguishing is hard classically) Any Boolean circuit of size quasipolynomial in N and of
constant depth cannot distinguish Usn from D with advantage better than O(polylog(N)/vV/N).

Exercise 10.2. An important step in digesting technical material is to understand what you
don’t understand — which terms in Theorem above require clarification in order to make
the theorem a formal statement?

As suggested by the exercise above, there are a few terms here which require clarification:

e What is a Boolean circuit in this context? By “Boolean circuit”, we mean a classical
circuit consisting of unbounded fan—inE] AND and OR gates, as well as NOT gates. The
circuit has a single output wire. Its size is the number of gates, and its depth is the
length of the longest path in edges from any input wire to the output wire. (Here, we
are implicitly viewing the circuit as a directed acyclic graph from input wires to output
wires.)

e What do we mean by “advantage”? Let D, D’ be distributions over a finite set X. Then,
we say a (classical or quantum) algorithm A distinguishes between D and D’ with advan-
tage e if

|Prxp[A accepts x] — Prx.p/[A accepts z]| = e.

e How are the distributions Usy and D accessed? We stated above that IV is exponentially
large in n; thus, each random sample z € {il}QN is an exponentially large string. To
make this a meaningful input model, we hence grant algorithms oracle access to string x:

— A classical algorithm is allowed to perform the mapping ¢ — x; for unit cost, for
i € [log(2N)] and x; the ith bit (in the +1 basis) of x.

— A quantum algorithm is allowed to coherently perform the mapping [i) — ;i)
for unit cost. Here, we are implicitly using phase kickback to inject z; € {£1} as
a phase. The mapping also works with any “garbage” in an ancilla register, i.e.
|2)]g) = @;li)|g) for any state |g).

2By unbounded fan-in, we mean each AND and OR gate can have multiple input wires, as opposed to just 2.

114

https://arxiv.org/abs/1205.0314
https://arxiv.org/abs/1205.0314

e What counts as “quasipolynomial” size in N ? Typically, quasipolynomial in N refers to
quantities such as O(2'°8° V) for constant c.

e What in the world does Theorem have to do with PH? As the title of this lecture
suggests, we are interested in giving an oracle-based task which can be solved in BQP but
not in PH. Yet, the statement of Theorem [10.I]says nothing about PH or even alternating
quantifiers — rather, it is a no-go statement for quasipolynomial size bounded depth
circuits. The missing link between these two ideas is worthy of a discussion in its own
right, which we now move to.

10.1.1 The connection between bounded depth circuits and alternating quantifiers

We first recall the definition of PH.

Definition 10.3 (Polynomial Hierarchy (PH) and X}). A language L C {0,1}" is in XF, if
there exists a polynomial-time uniformly generated Turing machine M which takes in input
x €{0,1}", k proofs y1,...,yx € {0,1}" for ¢,k € O(1), and acts as follows:

x el = FJynVya3Iys--- Qryr such that M accepts (z,y1,...,Yk), (10.1)
v g€ L = Yy IyVys- - Quyr such that M rejects (x,y1,. .., Yr), (10.2)

where Qr =3 (Qr =V) if i is odd (even). We define PH = |,y X%, where ¥ = P.

In the setting of oracle problems, there is a slick connection between bounded depth circuits
and computations of the above form, which we state and prove in full generality below. To
set this up, fix N = 2" for input parameter n, and consider an arbitrary Boolean function
f:{0, 1}N — {0,1}. Since any input z € {0, 1}N to f is exponentially long, we assume we are
given only access via some oracle O, to z, i.e. the ability to map ¢ — x; for unit cost for any
i € [N].

Lemma 10.4. Suppose there exists a EZ machine M which is given as input (1) a unary
string 1" and (2) x € {0, 1}N given implicitly via access to oracle Oy, and computes output

f(z) € {0,1}. Then, there exists a Boolean circuit of depth k 4+ 1 and size O(2'%8" V) for some
d € O(1) which, given access to oracle O, computes f(z).

It is worth stressing above that M only receives 1" as an explicit input; the “actual” input z
on which f is to be evaluated is “stored off-site” in the oracle O,.

Proof of Lemma[10.4 Let M be the ¥} machine computing f(z) with oracle access to z €
{0, 1}N. Without loss of generality, we may assume M makes only a single query to z, as per
the following exercise.

Exercise 10.5. Show that by adding two additional alternating quantifiers, one can simulate
M making a polynomial number of calls to f with some M’ making only a single call to f.
(Hint: Think about computational paths which branch each time an oracle query answer bit
is received. Use the 3 and V quantifiers to “pick out and enforce” the “correct” computational
branching process.) Can you reduce it to requiring just one additional alternating quantifier?

115

High-level idea. We shall build an AND-OR tree T" whose nodes are unbounded fan-in AND
and OR gates. The leaves are the input bits; by applying the AND and OR gates each time we

move up a level from the leaves, we arrive at the root, which shall be an OR gate. The output
bit of the root shall be 1 if and only if f(z) = 1. The depth of the tree shall be k 4+ 1, and

its size O(2!°8° NV); hence, we will have a circuit computing f(x) with properties stated in the
claim.

The construction. We view the action of M via its computational branches. Let us start
with the first existentially quantified proof, y; € {0, 1}”6. This induces a branching in M over
2" computational paths (one per possible proof y;), and M accepts if at least one of these
branches accepts. Hence, in T" we “represent y;” via an OR gate at the root which takes in
2"° wires and outputs a single wire. We can now recursively apply the same idea for each
successive proof y;, except whenever we have @); = V, we instead put in an AND gate into
T (as opposed to an OR gate for ; = J). Finally, each leaf of T is reached by fixing a
sequence of proofs y1, ..., yr. At any such leaf, we may assume M makes its single query to O,
and subsequently decides to accept or reject. Specifically, M evaluates some polynomial-time
function g(y1,...,yx) : ({0,1}")** — [N] to obtain the index i € [N] on which it will query

O. Upon obtaining x;, it performs some final polynomial-time computation ¢'(y1,. .., yx, ;) :
({0,1}")** x {0,1} ~ {0,1} to decide whether to accept or reject. Equivalently, this can be
viewed as: Conditioned on y1,...,y;, M either returns x; or ;.

Exercise 10.6. There is another option above: M could return a constant value independent
of ;. Why can we ignore this case without loss of generality? (Hint: Do we need a query to
Oy in this case? If no query is needed, how can we trivially modify the tree and corresponding
circuit to eliminate this leaf altogether?)

Now, if M returns x; at this leaf, then the corresponding circuit simply reads input bit z; here
via a query to O,. If M instead returns x; at this leaf, the corresponding circuit first reads
input x; via O, and subsequently applies a NOT gate (which is also viewed as a node in T
with one input and one output wire). This completes the construction.

Exercise 10.7. Prove that the tree T' constructed has depth k£ + 1 and size O(Zf:0(2nc)i) €

O(2"°%" N for some ¢’ € O(1). Conclude there is a bounded depth circuit as stated in the claim
which computes f(z) given oracle access to x. O

With Lemma we can close our discussion of the key claim of the lecture via the following

exercise.

Exercise 10.8. Use Lemma to answer our earlier question, “What in the world does
Theorem have to do with PH?”. In other words, show that Theorem implies that for
any k € O(1), no ¥} machine can distinguish between Uy and D with advantage better than

O(poly(N)/VN).

10.1.2 Qutline for lecture
With Theorem in place, the remainder of the lecture proceeds as follows:

e Specify the distribution D.

116

e Show that distinguishing D from Usy is easy quantumly.

e Show that distinguishing D from Usy is hard classically.

10.2 The distribution D

The distribution D in Theorem is defined via a two-step process as follows. Set n € N as
our input parameter, N = 2", and ¢ = 1/(241n(NN)) (the precise value of € is not relevant for
our lecture, only that € € ©(1/ poly(n)).

Step 1: Define a distribution G’ over continuous space RY x RV,

1. (Sample the first N real numbers) Sample z1,...,xx € R independently, each according
to A(0,1). (This can roughly be viewed as choosing a Haar random vector in R™.) Denote
r=(r1,...,75) € RV,

2. (Correlate the second N real numbers with) Observing that 2 € R?" is a column vector,
set y = H®"x for H the 2 x 2 Hadamard gate.

3. (Final output) Output vector z = /e(z,y) € RV,

Note that since € is “small”, with high probability —1 < z; < 1. For simplicity in this lecture,
we henceforth assume that indeed —1 < z; < 1 for all 7 € [2N]. (One can deal with z; violating
this via a further “truncation step”, which complicates the analysis and does not affect its core
intuition; we omit this here.)

Step 2: “Round” (' to a distribution D over discrete space {£1}" x {+1}". The distri-
bution G’ is over R?" | but Theorem requires a distribution D over {£1}*". Since we are
assuming all z; € [—1, 1], we can perform such a mapping to {:|:1}2N using a now-standard idea
in approximation algorithms; namely, “snap” z; to whichever of —1 or 1 it is closer to with
probability proportional to |z;|. Formally:

1. (Snap to the Boolean hypercube) Independently for each i € [2N], set

14z
2} := 41 with probability 5 %

2. (Final output) Output the resulting string 2/ € {£1}" x {£1}".

Brief intuition. The main idea behind the choice of G’ is that “Gaussian distributions are nice
to work with”. Thus, ideally we would like to analyze G’ rather than this clunky “discrete”
object D, which is necessary mainly due to the query model (e.g. recall a quantum query injects
2} € {£1} as a phase). Luckily, due to the choice of D, it turns out that as far as expectation
values are concerned, both D and G’ are “equivalent” in the following sense.

Exercise 10.9. Prove that E[z]] = z; for all i € [2N], where recall z, (z;) are the discrete
(continuous) coordinates.

117

Figure 10.1: The quantum circuit V,, for distinguishing D from Usy .

10.3 Distinguishing D from U,y is easy quantumly

The construction. Given oracle access to input 2’ € {:tl}QN, our goal is to decide whether
2" was drawn according to D or Usy. To do this quantumly, we imagine that the oracle for
accessing 2/, denoted O, is split into two oracles O, and O,, such that for any i € [N],

(“x part”) Ogli) — 2i|i) and (“y part”) Oyli) — 2y i).

Exercise 10.10. Show how to implement O, and O, given O..

The quantum circuit for distinguishing D from Usy is given in Figure It is denoted V,,
since it acts on n + 1 wires; the first wire is a control denoted ¢, and wires 2 to n + 1 are fed to
the oracle O,. The control mechanism is as follows: If ¢ = 0, then O, applies O,, and if ¢ =1,
O, applies O,.

Correctness. For the remainder of this section, set 2’ = 2y for 2/, € {£1}". The following
theorem shows that V,, works as intended.

Theorem 10.11. Suppose circuit V,, of Figure[10.1] outputs 1 when it measures 1 and outputs
—1 when it measures 0 (i.e. we are measuring observable —Z). Then, the expected output of V;,
on 2 ~ Usn (respectively, 2’ ~ D) is 0 (respectively, €).

Exercise 10.12. Theorem [10.11]is in terms of expectation, but we defined “advantage” in The-
orem using probabilities. Why does the former immediately imply the quantum advantage

claimed in Theorem [10.1f? (Hint: No repetition of the protocol is needed. Use the fact that V,
has only two possible outcomes, +1.)

Proof of Theorem [10.11]. We proceed in three steps.
Step 1: The probability with which V,, outputs 1.

Exercise 10.13. Show that V,, measures 1 in the control qubit with probability

1 | 1 1 o 1
s 1+ | o 2o DYl | | =5 (14 | Do EEE))y; | | = 5(tely),
1,J€[N] ,7€[N]

118

where 7 - j denotes the inner product modulo 2 of the bit strings ¢ and j, and H®"(4,) is the
(7,7)th entry of H®™. To characterize the acceptance probability of V;,, it hence suffices to
analyze the multilinear polynomial ¢(z’, /).

Exercise 10.14. Why is ¢ multilinear?
Step 2: Expected output of V,, for 2/ ~ Usy.

Exercise 10.15. Prove that Eq .y, [¢(2,9')] = 0. (Hint: There are three tools in math-
ematics which should always be at the top of your toolbox; the Cauchy-Schwarz inequality,
Taylor series, and the linearity of expectation.)

We hence conclude that when 2’ ~ Usp, the circuit V,, outputs each possible answer with
probability 1/2.

Step 3. Expected output of V,, for 2’ ~ D. Recall in Section that we had the gall to call
discrete-valued distribution D “clunky”, but the multivariate Gaussian distribution G’ “nice”.
Here we will see why. First, we claim that

Ew yy~arlo@y)] = ¢, (10.3)
where note we are using G'.

Exercise 10.16. Prove that for any i, j € [N], Eqy e [x;yg] _ 6(_\/1%4'.

Via the exercise above and the linearity of expectation, the claim of Equation ((10.3]) follows:

1 (_1)1‘7’ ’o 0 1
E(m’,y’)NG’[@(x/7y/)] = A Z 7E(z’,y’)~G’ [J:zyj] = A2 Z € =€
N i,j€[N] VN N i,j€[N]

So now we know ¢ has the right expectation with respect to G’; but we need the expectation of
p relative to D to correctly capture the expected output of V,,. For this, we use the following
remarkable lemma (whose proof is omitted).

Lemma 10.17. For any multilinear function F : R?N — R,
EunplF(2)] = Eencr [F(2)].

In words, if we process the input 2’ by a sufficiently restricted function F, namely multilinear
F, then one cannot distinguish on expectation whether samples are drawn from D or G'.

Exercise 10.18. Combine Equation (10.3)) and Lemma [10.17] to complete the proof of Theo-
rem [10.111 What is the multilinear function F set to in our use of Lemma O

119

10.4 Distinguishing D from U,y is hard classically

We now wish to show that on expectation, any bounded depth circuit (as outlined in Theo-
rem cannot distinguish between samples 2z’ drawn from D versus Usy. A hint as to where
we might wish to begin is given by Lemma which recall says that on expectation under
the action of any multilinear map F, D and Usy are indistinguishable. Lucky for us, it is
well-known that the action of any Boolean circuit is captured by a multilinear map, which we
now review.

10.4.1 Boolean circuits and multilinear polynomials

Let C be an arbitrary circuit mapping {£+1}" to {#1}. We can equivalently view C' as a Boolean
function from {£1}" to {#1}, to which the following lemma applies.

Lemma 10.19. Let f: {+1}" — {£1} be a Boolean function. Then, f has a (unique) multi-
linear extension g : R™ — R such that g(x) = f(x) when x € {+1}", and

o) = 3 38 [
SC[n] ies
for g(S) € R the Fourier coefficients of g.

Proof sketch. The idea is to write g as a sum of 2" terms, each of which encodes the product
of an output f(x) for some z times an “indicator function” which eliminates all terms other
than . The construction is best sketched via an example. Let n = 3, and consider input
x = (1,—1,1). Then, we add to g the term

() () ()0

The three terms in brackets serve as the “indicator function” alluded to above, which is uniquely
specified by the string x = (1,—1,1).

Exercise 10.20. Verify that when x = (1, —1, 1) is plugged into the equation above, the output
is f(x). What is the output when z € {£1}” but = # (1, —1,1)?

Exercise 10.21. What would be the indicator function for, say, x = (—1,—-1,—1)7
By adding to g a term of the above form for each possible input = € {+1}", expanding

the brackets and simplifying the resulting expression, we obtain the final desired polynomial g,
which may consist of exponentially many terms in general.

Exercise 10.22. Why is g multilinear? O

10.4.2 Tools and proof approach

In the remainder of our discussion, let us henceforth use C interchangeably to mean a classi-
cal circuit and its multilinear extension (Lemma [10.19), where the desired interpretation will
hopefully be clear from context. Our goal is to show that if C' : {+1}*" — {£1} is constant

120

depth and has size 218V for constant ¢, then C' cannot distinguish on expectation between D

and UQN, i.e.

BornlC) - BunuaylCw)] < 2B,

where recall N = 2" is exponentially large in the input parameter, n.
Basic proof approach. We begin with a simple observation.

Exercise 10.23. Prove that E,y,, [C(u)] = C(0), for C(0) the Fourier coefficient of C' corre-
sponding to empty set S = 0.

In words, the expectation of the circuit C' under Usy simply eliminates all higher order Fourier
coefficients, leaving behind the constant term in the Fourier expansion of C, C(()). Thus, it
suffices for our goal to show

E..plC(z)] = C)| < “small”. (10.4)

Our basic proof approach is hence to show that, on expectation, the contribution of higher order
Fourier coefficients to C(z") on inputs 2z’ ~ D is bounded.

Tools. To follow this basic approach, we require a pair of tools.
1. Tail bounds on Fourier coefficients (proof omitted):

Lemma 10.24. Let C : {£1}*" — {£1} be a Boolean circuit of depth d and of size s.
Then for any k € N, there exists ¢ € O(1) such that

Z ‘6(5)‘ < (clog s)4=Vk,

SC[2N] s.t. |S|=k

In words, Lemma, intuitively says that for constant depth circuits, the low order
(e.g. k € O(1)) Fourier coefficients are bounded. Thus, this lemma alone gets us part of
the way to Equation ; the problem is the lemma does not work a priori for higher
order coefficients.

2. Random walks: To use Lemma to also bound the high-order Fourier coefficients of
C, we use a trick — it turns out we can simulate drawing z’ ~ D with a random walk
which takes “baby steps”. Applying Lemma[I0.24] to each such “baby step” and applying
the triangle inequality then does the trick.

10.4.3 Main theorem and proof sketch

We are now ready to state and sketch a proof of the main theorem, which is a quantitative
version of Equation (|10.4]).

Theorem 10.25 (D fools bounded depth circuits). Let C : {+1}*" — {+1} be a Boolean
circuit of depth d and size s. Then

, ~ 12¢(clog 5)2(4=1)
[BplC(] = OO)| < =200 ——.

121

To prove Theorem [10.25] we require one final lemma, which is proven using the tail bounds
of Lemma [10.24] (i.e. we will not directly use Lemma [10.24] otherwise in this lecture).

Lemma 10.26. Fiz p < 1/4. Let C : {#1}*" s {%1} be a Boolean circuit of depth d and size
s such that \/ep(clog s)4=1 < L. Then, for any 2o € [—5, 312V,

12ep?(clog s)2(d=1)
VN '

Intuitively, Lemma [10.26] says that if in a random walk we evaluate C' at our “current point”
20, versus if we evaluate C' on a slight perturbation of order p of zy (i.e. on zg + pz), then
the ability for C' to distinguish these inputs is damped quadratically in p. Thus, to simulate
drawing 2’ ~ D, we shall run a random walk with baby steps of small order, i.e. p = 1/v/N.

|E.ncr[Cl20 + pz)] — Cl20)] <

Proof sketch of Theorem [10.25. Assume without loss of generality that \/€(clogs)¢~! < iNl/‘l,
as otherwise the claim is vacuous. We run the following random walk for ¢t = N steps, with

i] - 1.
perturbation size p = Nk
1. Draw ¢ samples 21, ... 2() ~ @,

2. Set the output of “step i” of the random walk, for ¢ € {0,...,t}, to be random variable

ZS(Z') — p(z(l) I Z(i)).

One can show that 2=(®) ~ @, i.e. the random walk exactly reproduces the distribution G’.
(Namely, 2= and G’ share the same expectation and covariance matrix.)

Now, for any step i € {0,...,t — 1}, since each entry of 2=(1) is Gaussian with variance scaling
as ~ p2e, we have with high probability that z<() € [—1/2,1/2]2N | as required for Lemma
Thus, by setting zg = 2= and calling Lemma (i.e. this is where we use the tail bounds),
we have that
- 12ep?(clog s)2(@=1)
< JN .

Thus, the change in output of C', on expectation from step ¢ to i+ 1 of the walk, is bounded by a
factor scaling with p?> = 1/N. Applying this recursively over all steps of the walk, we conclude:

|BIO=0D)] - Blo=0)]| (10.5)

[BonnlCEN = CW)] = |Ene[C()] - CO)
= |EleEE0) - Co)

< Y |Brce=e) - plee=)|
1=0

12ep?(clog 5)2(d=1)
<t
VN
12¢(clog)21
i ’
where the first statement follows from Lemma [10.17] the second since 2=() ~ G’, the third by
the triangle inequality over all steps of the walk, and the fourth by Equation (10.5]).

122

Exercise 10.27. The third statement above involves a term of form }E[C(zg(l))] — E[C(z=0))] !,

but we have not explicitly defined <), Intuitively, we require E[C(2=(9)] = C(0)). How should
we define 2= for this requirement to h/(\)ld? (Hint: Which input z € R*V reduces the multi-
linear extension C' to its constant term, C/(f))?) Why does this choice of 2<(9) make sense given

our definitions of 2=<() for i € [t]? O

123

Bibliography

124

	Classical Complexity Theory Review
	Introduction
	Notation
	Classical complexity theory
	Turing machines
	P and NP
	The Cook-Levin Theorem, NP-completeness, and Reductions
	The Extended Church-Turing Thesis

	Quantum computation review
	Linear Algebra
	Basic quantum computation
	Pure state quantum computation
	Mixed state quantum computation

	Bounded error quantum polynomial time (BQP)
	BPP
	Syntactic versus semantic classes, PromiseBPP, and what will really be PromiseBQP

	BQP
	Norms and perturbations to quantum gates
	Universal quantum gate sets
	The BQP subroutine problem

	Relationship to other complexity classes

	Linear systems of equations and a BQP-complete problem
	The basic idea: Quantum eigenvalue surgery
	Aside: Brief review of the QFT and QPE

	A quantum algorithm for linear systems of equations
	Condition numbers of matrices
	Assumptions for the algorithm
	The algorithm

	A BQP-complete problem: Matrix inversion

	Quantum Merlin Arthur (QMA) and strong error reduction
	Quantum Merlin Arthur (QMA)
	Strong error reduction for QMA
	Intuition: A spinning top
	Proof of strong error reduction

	Relationship to other classes
	The many cousins of QMA
	Using strong error reduction to show QMAPP

	The quantum Cook-Levin theorem
	The Cook-Levin theorem
	Local Hamiltonians and Boolean Constraint Satisfaction
	The quantum Cook-Levin theorem
	Containment in QMA
	Hardness for QMA

	Quantum-Classical Merlin Arthur (QCMA) and Ground State Connectivity
	Quantum-Classical Merlin Arthur (QCMA)
	Ground State Connectivity
	QCMA-completeness of GSCON

	Quantum Interactive Proofs (QIP), semidefinite programs, and multiplicative weights
	The Multiplicative Weights algorithm
	QIP and semidefinite programs
	Quantum interactive proofs
	Semidefinite programming
	Quantum interactive proofs as SDPs

	QIP=PSPACE
	The algorithm
	Correctness

	Boson Sampling
	Of hedgehogs and photons
	Connection to the matrix permanent
	Boson Sampling
	The exact case
	The approximate case

	BQP versus the Polynomial Hierarchy
	The key claim
	The connection between bounded depth circuits and alternating quantifiers
	Outline for lecture

	The distribution D
	Distinguishing D from U2N is easy quantumly
	Distinguishing D from U2N is hard classically
	Boolean circuits and multilinear polynomials
	Tools and proof approach
	Main theorem and proof sketch

	Bibliography

